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Abstract

Humans show a remarkable capacity to generate novel goals, for learning [26] and
play [8] alike, and modeling this human capacity would be a valuable step toward
more generally-capable artificial agents [9]. We describe a computational model
for generating novel human-like goals represented in a domain-specific language
(DSL). We learn a ‘human-likeness’ fitness function over expressions in this DSL
from a small (<100 game) human dataset collected in an online experiment. We
then use a Quality-Diversity (QD) approach to generate a variety of human-like
games with different characteristics and high fitness. We demonstrate that our
method can generate synthetic games that are syntactically coherent under the DSL,
semantically sensible with respect to environmental objects and their affordances,
but distinct from human games in the training set. We discuss key components of
our model and its current shortcomings, in the hope that this work helps inspire
progress toward self-directed agents with human-like goals.

While both learning and playing, humans readily generate novel goals that make use of environmental
affordances and their own abilities, without any top-down guidance or external motivation [21, 1].
For instance, a child exploring a novel collection of toys might choose to stack some blocks in a
tower before trying to knock it over with a ball, all without parental encouragement or supervision.
Among the suggested benefits of play is a contribution to cognitive development [8]—through play,
we test and improve our capacity for problem-solving and reasoning in a variety of contexts. Recent
work in reinforcement learning has attempted to extend notions of play, particularly self-created
goals, to artificial autotelic agents [9]. While these agents, like humans, make use of goals in order to
self-direct their learning and exploration, such approaches typically define goals as particular regions
of state space [14, 5, 29] or, more recently, as linguistic descriptions generated by and evaluated
with large language models [15, 12, 10, 32]. Thus, the “goals” these agents generate tend to be
either unstructured or simplistic, and fail to recreate both the process and outcomes of human goal
generation. In this work, we propose a novel approach for generating a specific class of human-like
goals. We are motivated both by achieving a greater understanding of the human cognitive mechanism
of goal generation and by empowering artificial agents to develop and hone skills through iterative
task-setting. Our contribution is a model of an underexplored cognitive capacity that could facilitate
the development of autotelic agents with richer and more creative self-generated goals.

We build on previous work [11] studying game creation as the capacity to generate playful cognitive
goals. We represent these cognitive goals as structured programs in a domain-specific language (DSL).
This representation has its root in Language of Thought (LoT) approaches, and such program-like
encodings have been used in a variety of cognitive science domains [27]. We focus our attention
on games that are both structured (defining explicit conditions for scoring and ending the game) as
well as temporally-rich (i.e. fundamentally built from sequences of states in time, as opposed to
the instantaneously-evaluable conditions found in most board or video games). Prior approaches,
such as GLTL [22] or reward machines [16] allow representing temporally-extended, non-Markovian
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goals. We borrow from Icarte et al. [16] the notion of these goals operating as programs over
sequences of states, emitting reward when appropriate, but using a domain-specific language capable
of representing human games. Our work also falls broadly in the realm of automatic game design,
which has mostly focused on board games [25, 4] and video games [30, 28, 17]. While reliably
producing human-quality and non-trivial games remains an open challenge, evolutionary approaches
have yielded at least some success when combined with expert knowledge [3]. Our approach learns a
feature-based fitness function that distinguishes between “human” and “non-human” games, which
acts as the objective function for a quality-diversity algorithm that produces a wide range of plausible
game samples.

1 Representing Games as Programs

To represent human-like games, we use the DSL defined by Davidson et al. [11]. The DSL is
specifically designed to represent structured, scorable games played by an embodied agent in an
egocentric, 3D environment (the AI2Thor simulator [18]). Typical games involve manipulating
objects in the environment (balls, blocks, etc.) and positioning the player-controlled agent. Each
game program contains at least two sections: a set of preferences which specify how a game is played
and scoring rules which describe how a player’s score or reward is determined from their actions
in the game. A game preference is either a set of temporal conditions on gameplay expressions (i.e.
a sequence of states in which particular statements about the environment are true, which maps to
linear temporal logic [23]) or a static condition which must hold at the end of a game. For instance,
a game preference might encode the act of throwing a ball into a bin, or an item being placed in a
drawer at the end of play. In addition to preferences and scoring, a game may optionally specify
setup conditions that must be satisfied before play can begin and terminal conditions that indicate
the end of the game. The full specification of our DSL and predicates are available in Appendix E.

2 Modeling the Human-Likeness of Games: a Learned Objective Function

While our DSL can represent a large variety of possible games, validity under the language’s
probabilistic context-free grammar (PCFG) is no guarantee of quality: syntactically valid programs
might still be uninterpretable (e.g. refer to a nonexistent variable), contradictory (e.g. require a
predicate to be simultaneously satisfied and unsatisfied) or violate physical intuitions (e.g. require
a structure to be made by stacking balls rather than blocks). While these challenges might be
sidestepped by directly sampling from a generative model trained on a sufficiently large and varied
dataset of high-quality games, producing such a dataset comes with substantial costs. We instead
draw inspiration from the capacity of children to invent novel and tractable games from a young age
and without exposure to internet-scale amounts of data.

At a high level, our approach yields an explicit measure of game quality by augmenting the modest
set of 98 human games translated into the DSL by Davidson et al. [11] with a substantially larger set
of games corrupted by introducing random changes sampled from the PCFG. We then learn a feature-
based objective function that discriminates between positive real games and their negative corruptions.
Our goal is to learn a fitness function f : G → R mapping example games g ∈ G, the space of game
programs, to real-valued fitness scores, where higher is more “human-like.” The following sections
describe our feature extraction function ϕ : G → RF (where F is the dimensionality of our feature
space), and the form of f and the loss function we use to learn it.

2.1 Feature Representation of Games

Our feature extraction procedure ϕ represents each game as a F = 50-dimensional vector of feature
values. Features measure a variety of structural and semantic properties of games, from the size and
depth of the syntax tree, to where all used variables are defined (and vice-versa). Particularly notable
features include the likelihood of a program under a simple n-gram language model trained over the
goal program syntax trees and an approximate “feasibility” measure that makes use of a dataset of
382 human play traces to determine the proportion of a game’s predicate-argument combinations
which we have seen satisfied by human players. A full description of our feature set, including the
features found to be most predictive of positives and negatives, is available in Appendix B.
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2.2 Contrastive Learning of a Fitness Function

We learn a fitness function optimized to assign higher fitness scores to positive human-generated
games than to a set of negatives. Our approach takes inspiration from contrastive learning of energy-
based models [7], though we attempt to maximize the fitness score assigned to positive examples,
rather than minimize their energy. To learn an effective fitness function, the set of negatives must be
qualitatively worse than our set of human games without being trivially distinguishable from them.
Early experiments indicated that naively sampling from the PCFG with expansion probabilities fit
to our collected data produced negatives that met the first criteria but not the second. Instead, we
generate negatives by uniformly sampling a single node (and all of its children) from a game’s syntax
tree before re-generating the node and its children using the PCFG. Given the small dataset, large
grammar (see Appendix E), and the lack of context (in the PCFG), resampling a single node (and
its descendants) can be sufficient to alter these programs. While these alterations can sometimes be
benign, in most cases the regrown expression is semantically ‘out of place,’ depending in part on the
height of the sampled node in the syntax tree — larger regrowths, sampled closer to the root, tend to
differ more. To account for the variable difficulty, we generate a large set of negatives, 1024 for each
of the 98 positives, for a total of around 100,000 examples.

Our fitness function fθ(g) = θTϕ(g) is a simple linear transformation from our feature space to a
real-valued output, parameterized by a feature vector θ ∈ RF . We train the fitness function using a
softmax loss, not unlike the MEE loss used to train energy-based models [19] or the InfoNCE loss
[31]. Formally, for a positive example g+ and a set of negative examples {g−k }, k ∈ {1, 2, · · · ,K},
we assign the following loss:

L(g+, {g−k }
K
1 ; θ) =

exp(fθ(g
+))

exp(fθ(g+)) +
∑K

k=1 exp(fθ(g
−
k ))

(1)

This loss encourages the model to assign higher fitness scores to the real games than the negative
examples. Simultaneously, this loss provides a diminishing incentive to push negative fitness scores
down as the distance between the positives and negatives increases, intuitively assigning higher loss
to negative examples with fitness closer to the positive example’s fitness. See Appendix C for full
details of our training and cross-validation setups.

3 Searching Through the Space of Games

We use MAP-Elites [24], a popular “quality-diversity” algorithm, in order to explore a wider range
of human-like games than would be returned through direct optimization of our fitness function.
MAP-Elites is a population-based, evolutionary algorithm that works by defining a set of behavioral
characteristics: discrete-valued functions over genotypes (in our case, games) that form the axes of
a multi-dimensional archive of cells. At each step, a game g is selected uniformly from among the
individuals in the archive and mutated to form a new game g′. The mutated g′ is evaluated both under
the fitness function f and each of the n behavioral characteristics bi : G → {0, . . . , ki} in order to
determine which cell c = [b1(g), . . . , bn(g)] it occupies. If the cell is unoccupied, then g′ enters the
archive. Otherwise, it enters the archive only if its fitness is greater than the current occupant of the
cell (and replaces the previous occupant). In this way, the algorithm maintains an “elite” for each
possible combination of values under the behavioral characteristics.

Figure 1: MAP-Elites quantitative results.

Following prior work on using MAP-Elites for procedural
content generation [6], we define a set binary behavioral
characteristics that each indicate the presence of partic-
ular archetypal game components (i.e. a ball, or the use
of the adjacent predicate) – the algorithm attempts to
find a high-quality game for each possible combination
of values under the behavioral characteristics. We use 10
such features for a total archive size of 1024. To mutate
a game, we randomly select an operator from among the
following: regrowing a random node and its children in its
syntax tree, inserting & deleting the child of a node with
multiple potential children, crossing over with the syntax
tree of another randomly-selected game, resampling the
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variables, initial conditions, or final conditions used by
a preference, and resampling the optional game sections (i.e. setup and terminal conditions). We
seed the initial archive by naively sampling from the PCFG – that is, the algorithm does not start
with corruptions of existing games as were used to train the fitness function. Further details of the
algorithm are available in Appendix D.

4 Results

Table 1: MAP-Elites generates simple human-like goals. Each pair of games in a row has the same set of
MAP-Elites behavioral characteristics (section 3), with the fitness scores in parentheses.

Real Game #42 (34.482) Real Game #14 (33.154) Real Game #93 (33.391)
To play this game, pick up a dodgeball and throw

it into a hexagonal bin. The game ends when you

decide to stop, and your score is equal to the number

of successful throws you made into the bin.

To play this game, stack blocks in the following

order from bottom to top: a bridge block, a flat

block, a tall cylindrical block, a cube block, and a

pyramid block. At the end of the game, your score

is 10 times the number of different blocks used in

the stack.

To set up the game, place a doggie bed in the room,

ensuring it’s less than half the room’s distance from

the center. The objective of the game is to place

different objects inside a building along with the

doggie bed. The doggie bed should be on the floor,

while the other objects should be off the floor and

not touching any wall. The game ends when you’ve

placed as many different objects as possible in this

way. Your score is determined by the number of

different objects you’ve successfully placed inside

the building with the doggie bed.

MAP-Elites Sample (33.986) MAP-Elites Sample (32.955) MAP-Elites Sample (32.123)
To play this game, pick up a beachball and throw it

so that it lands inside a hexagonal bin. The game

ends after you’ve successfully thrown the beachball

into the bin 22 times or after you’ve successfully

thrown 5 different objects into the bin. Your score

is the number of successful throws you made into

the bin.

To play this game, place both a block and a pyramid

block on a green bridge block. The game ends after

this has been done at least 12 times, and your score

is the number of times you’ve successfully placed

both blocks on the green bridge block.

To set up the game, place a hexagonal bin less than

0.4 units away from the east wall. The game in-

volves placing a blue cube block on a shelf adjacent

to the west wall and positioning an object of the

same color as orange closer to the rug than to the

door. The game ends when you’ve placed 23 blue

cube blocks on the shelf or positioned 20 different

orange-colored objects closer to the rug. Your score

is the number of times you’ve placed a blue cube

block on the shelf.

Figure 1 provides a quantitative summary of the results of our MAP-Elites search process. Broadly,
the search is successful: the best fitness in the archive approaches that of human games within only
a few “generations,” the archive is filled relatively quickly, and overall sample quality continues to
improve over time. The key question, however, is whether these quantitative results correlate with
actual improvements in the “human-likeness” of generated games. Table 1 provides a comparison
between archive exemplars and human games with the same behavioral characteristics. For clarity,
we back-translate both human and generated games into neutral natural language and provide the
full goal programs in Table 3. Qualitatively, we find that archive exemplars tend to resemble simple
versions of the matching human games. The generated games are usually reasonable in their specified
predicates and temporal modals, but tend to struggle with coherence between gameplay components
(see third example), or with the number of times they task participants with repeating elements
(all three examples). To some extent, this may be related to grounding: our current model is not
constrained by the number of different types of objects in the environment or the difficulty of reaching
proposed goals. To explore novel productions from our model, Table 2 highlights generations from
cells in the MAP-Elites that have no match in our dataset (and see Table 4 for the programs in the
DSL). These novel samples point towards the model’s success at generating games with no immediate
point of reference among the human dataset, as well as games that make use of a variety of actions,
objects, and properties. However, overall coherence remains a sticking point.
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Table 2: MAP-Elites generates interesting, novel goals. Each of the three games below has high fitness and
fills a cell in the MAP-Elites archive with no corresponding human game in our dataset. Each sample’s fitness
score is in parentheses.

MAP-Elites Sample (34.039) MAP-Elites Sample (33.764) MAP-Elites Sample (33.749)
To set up the game, place a hexagonal bin near the

rug, ensuring that it is less than 0.3 units away. The

objective of the game is to change the orientation of

the bin from diagonal without touching or holding

it. The game ends after the bin’s orientation has

been changed in this way at least 14 times, and your

score is the number of times you’ve successfully

changed the bin’s orientation.

To play this game, place pillows on the bed and

throw either dodgeballs or beachballs. The game

ends after you’ve thrown a ball at least 5 times.

Your score at the end of the game is the number of

pillows you’ve placed on the bed.

To play this game, arrange objects so that two of

them are the same color, one of these colored ob-

jects is adjacent to another object, and one of the

colored objects is inside another object. Addition-

ally, throw either a dodgeball or a golfball. The

game ends after you’ve satisfied either of these con-

ditions: arranged objects in the specified way at

least twice, or thrown different balls at least three

times. Your score is the number of times you’ve

successfully arranged objects in the specified way.

5 Discussion

We describe a model capable of generating human-like goals synthesized as reward-generating
programs. Our quality diversity approach, powered by a constrastively-learned fitness function, is
capable of producing coherent programmatic expressions in a relatively sophisticated DSL despite
learning from an initial dataset consisting of fewer than 100 examples. We accomplish this by
leveraging the structure of our domain (in order to produce a wide range of plausible negatives),
expert knowledge (in the form of game desiderata and features that encode them), and secondary
sources of data (human play-traces which give a sense of which predicates are feasibly satisfiable).
Davidson et al. [11] noted ‘creativity, compositionally, and common-sense’ as key aspects of human
goal generation. The relative shortcomings of our model highlight two additional important factors:
complexity (not too little, not too much) and coherence (how different aspects of a game relate to each
other). With that in mind, the relative success at recovering and modulating simple games indicates
a potentially viable way forward in terms of capturing the process by which humans invent novel
games.

6 Future Work

Our preliminary results point directly toward several avenues for continued research. First, we intend
to perform a human evaluation of generated games, in terms of attributes such as “fun,” creativity,
and discriminability from human games. This could provide a clearer picture of the quantitative and
qualitative differences between participant-generated games and model samples, and offer richer
training signals for future models. We hope that such an analysis could also shed light on the criteria
by which humans evaluate games, including the mechanisms used to perform such evaluations without
actually playing the game in question. In addition, our human-inspired game generation system
could be leveraged as part of an automatic task curriculum for an artificial agent. This approach falls
broadly in line with research in autotelic agents and co-learning [9]. Finally, large language models
(LLMs) provide an interesting alternative model class for both generating and evaluating games.
While LLMs might detract from the cognitive plausibility of a model, they could be readily leveraged
as evaluators in the same way as our n-gram feature, or perhaps fulfill a larger role. LLMs could also
be incorporated into the sample generation process, such as through evolutionary techniques [20] or
Bayesian inference [13].
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A Result Figures

Table 3: Comparison between real games and corresponding MAP-Elites generations
Real Game #42 (fitness 34.4821) Real Game #14 (fitness 33.1543) Real Game #93 (fitness 33.3907)
To play this game, pick up a dodgeball and throw it into a hexagonal bin.

The game ends when you decide to stop, and your score is equal to the

number of successful throws you made into the bin.

To play this game, stack blocks in the following order from bottom to

top: a bridge block, a flat block, a tall cylindrical block, a cube block,

and a pyramid block. At the end of the game, your score is 10 times the

number of different blocks used in the stack.

To set up the game, place a doggie bed in the room, ensuring it’s less

than half the room’s distance from the center. The objective of the game

is to place different objects inside a building along with the doggie bed.

The doggie bed should be on the floor, while the other objects should

be off the floor and not touching any wall. The game ends when you’ve

placed as many different objects as possible in this way. Your score

is determined by the number of different objects you’ve successfully

placed inside the building with the doggie bed.

(define (game 5ff4a242−51) (:domain few−objects−room−v1)
(:constraints

(and
(preference throwToBin

(exists (?d − dodgeball ?h − hexagonal_bin)
(then

(once (agent_holds ?d) )
(hold (and (not (agent_holds ?d) ) (in_motion ?d) ) )
(once (and (not (in_motion ?d) ) (in ?h ?d) ) )

)))))
(:scoring

(count throwToBin)
))

(define (game 613e4bf9−17) (:domain medium−objects−room−v1)
(:constraints

(and
(preference castleBuilt

(exists (?b − bridge_block ?f − flat_block ?t −
tall_cylindrical_block ?c − cube_block ?p −
pyramid_block)

(at−end
(and

(on ?b ?f)
(on ?f ?t)
(on ?t ?c)
(on ?c ?p)

))))))
(:scoring

(* 10 (count−once−per−objects castleBuilt) )
))

(define (game 61087e4f−114) (:domain medium−objects−room−v1)
(:setup

(exists (?d − doggie_bed)
(game−conserved (< (distance room_center ?d) 0.5)

)))
(:constraints

(and
(preference objectInBuilding

(exists (?o − game_object ?d − doggie_bed ?b − building)
(at−end

(and
(not (same_object ?o ?d))
(in ?b ?d)
(in ?b ?o)
(on floor ?d)
(not (on floor ?o))
(not (exists (?w − wall) (touch ?w ?o)))

))))))
(:scoring

(count−once−per−objects objectInBuilding)
))

MAP-Elites Sample (fitness 33.9861) MAP-Elites Sample (fitness 32.9549) MAP-Elites Sample (fitness 32.1233)
To play this game, pick up a beachball and throw it so that it lands inside

a hexagonal bin. The game ends after you’ve successfully thrown the

beachball into the bin 22 times or after you’ve successfully thrown 5

different objects into the bin. Your score is the number of successful

throws you made into the bin.

To play this game, place both a block and a pyramid block on a green

bridge block. The game ends after this has been done at least 12 times,

and your score is the number of times you’ve successfully placed both

blocks on the green bridge block.

To set up the game, place a hexagonal bin less than 0.4 units away from

the east wall. The game involves placing a blue cube block on a shelf

adjacent to the west wall and positioning an object of the same color as

orange closer to the rug than to the door. The game ends when you’ve

placed 23 blue cube blocks on the shelf or positioned 20 different orange-

colored objects closer to the rug. Your score is the number of times

you’ve placed a blue cube block on the shelf.

(define (game evo−8158−92−1) (:domain few−objects−room−v1)
(:constraints

(and
(preference preference0

(exists (?v0 − beachball ?v1 − hexagonal_bin)
(then

(once (agent_holds ?v0) )
(hold (and (in_motion ?v0) (not (agent_holds ?v0) ) ) )
(once (in ?v1 ?v0) )

)))))
(:terminal

(or
(>= (count preference0) 22 )
(>= (count−once−per−objects preference0) 5 )

))
(:scoring

(count preference0)
))

(define (game evo−8180−44−0) (:domain few−objects−room−v1)
(:constraints

(and
(preference preference0

(exists (?v0 − block ?v1 − bridge_block_green ?v2 −
pyramid_block)

(at−end
(and

(on ?v1 ?v2)
(on ?v1 ?v0)

))))))
(:terminal

(>= (count preference0) 12 )
)
(:scoring

(count preference0)
))

(define (game evo−8111−143−0) (:domain few−objects−room−v1)
(:setup

(exists (?v0 − hexagonal_bin)
(game−conserved (< (distance east_wall ?v0) 0.4)

)))
(:constraints

(and
(preference preference0

(exists (?v1 − cube_block_blue ?v0 − shelf)
(at−end

(and
(adjacent west_wall ?v0)
(on ?v0 ?v1)

))))
(preference preference1

(exists (?v2 − game_object)
(at−end

(and
(same_color ?v2 orange)
(< (distance rug ?v2) (distance door ?v2))

))))))
(:terminal

(or
(>= (count preference0) 23 )
(>= (count−once−per−objects preference1) 20 )

))
(:scoring

(count preference0)
))

6



Table 4: Novel MAP-Elites samples (from archive cells without human-created games).

MAP-Elites Sample (fitness 34.0390) MAP-Elites Sample (fitness 33.7636) MAP-Elites Sample (fitness 33.7494)
To set up the game, place a hexagonal bin near the rug, ensuring that it

is less than 0.3 units away. The objective of the game is to change the

orientation of the bin from diagonal without touching or holding it. The

game ends after the bin’s orientation has been changed in this way at

least 14 times, and your score is the number of times you’ve successfully

changed the bin’s orientation.

To play this game, place pillows on the bed and throw either dodgeballs

or beachballs. The game ends after you’ve thrown a ball at least 5 times.

Your score at the end of the game is the number of pillows you’ve placed

on the bed.

To play this game, arrange objects so that two of them are the same color,

one of these colored objects is adjacent to another object, and one of

the colored objects is inside another object. Additionally, throw either a

dodgeball or a golfball. The game ends after you’ve satisfied either of

these conditions: arranged objects in the specified way at least twice, or

thrown different balls at least three times. Your score is the number of

times you’ve successfully arranged objects in the specified way.

(define (game evo−8170−346−1) (:domain
medium−objects−room−v1)

(:setup
(exists (?v0 − hexagonal_bin)

(game−conserved (< (distance rug ?v0) 0.3))
))
(:constraints

(and
(preference preference0

(exists (?v1 − hexagonal_bin)
(then

(once (object_orientation ?v1 diagonal) )
(hold (and (not (touch agent ?v1) ) (not (agent_holds ?v1)

) ) )
(once (not (object_orientation ?v1 diagonal) ) )

)))))
(:terminal

(>= (count preference0) 14 )
)
(:scoring

(count preference0)
))

(define (game evo−8179−288−0) (:domain few−objects−room−v1)
(:constraints

(and
(preference preference0

(exists (?v0 − pillow ?v1 − bed)
(at−end

(and
(on ?v1 ?v0)

))))
(preference preference1

(exists (?v1 − (either dodgeball beachball))
(then

(once (agent_holds ?v1) )
(hold (and (not (agent_holds ?v1) ) (in_motion ?v1) ) )
(once (not (in_motion ?v1) ) )

)))))
(:terminal

(>= (count preference1) 5 )
)
(:scoring

(count preference0)
))

(define (game evo−8174−339−0) (:domain few−objects−room−v1)
(:constraints

(and
(preference preference0

(exists (?v0 ?v1 ?v2 ?v3 − game_object)
(at−end

(and
(same_color ?v1 ?v2)
(adjacent ?v0 ?v1)
(in ?v3 ?v1)

))))
(preference preference1

(exists (?v2 − (either dodgeball golfball))
(then

(once (agent_holds ?v2) )
(hold (and (not (agent_holds ?v2) ) (in_motion ?v2) ) )
(once (not (in_motion ?v2) ) )

)))))
(:terminal

(or
(>= (count preference0) 2 )
(>= (count−once−per−objects preference1) 3 )

))
(:scoring

(count preference0)
))
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B Full Feature Set

To simplify training fitness models, we ensure that all feature values are on the unit interval, using the
following feature types:

• A binary value (marked with [b])
• A proportion between zero and one ([p])
• A real value discretized to two or more levels and treated as an indicator variable ([d], with

the levels listed at the end of the description)
• A float value normalized to the unit interval over the full dataset of positive and negative

games ([f])

For our n-gram features, we extract n-gram tokens from an in-order traversal of the syntax tree. We
use 5-gram models with stupid backoff [2] with a discount factor of 0.4, and report the mean log
score as the feature value, both jointly over the entire game program and separately over the different
sections (setup, preferences, terminal conditions, and scoring).

For our predicate play trace features, we use a simplified version of the predicate satisfaction com-
putation aspect of our reward machine (DSL program interpreter). We record, for every human
play trace we have, and each predicate listed below, for every object assignment that satisfies it
in that trace, all indices of states at which the predicate is satisfied. Recording specific states
allows to us compute conjunctions, disjunctions, and negations in addition to individual predi-
cate satisfactions. We limit ourselves to a subset of our predicates, which covers over 95% of
predicate references in our dataset: above, adjacent, agent_crouches, agent_holds, broken,
game_start, game_over,in, in_motion, object_orientation, on, open, toggled_on, and
touch. Any predicate that is not implemented is assumed to be feasible to have been satisfied.

Our full feature set is:

• ast_ngram_full_n_5_score [f]: What is the mean 5-gram model score under an n-gram model
trained on the real games?

• ast_ngram_setup_n_5_score [f]: What is the mean 5-gram model score of the setup section
under an n-gram model trained on the real game setup sections?

• ast_ngram_constraints_n_5_score [f]: What is the mean 5-gram model score of the gameplay
preferences section under an n-gram model trained on the real game preferences sections?

• ast_ngram_terminal_n_5_score [f]: What is the mean 5-gram model score of the terminal
conditions section under an n-gram model trained on the real game terminal sections?

• ast_ngram_scoring_n_5_score [f]: What is the mean 5-gram model score of the scoring section
under an n-gram model trained on the real game scoring sections?

• predicate_found_in_data_prop [p]: What proportion of predicates are satisfied at least once in
our human play trace data?

• predicate_found_in_data_small_logicals_prop [p]: What proportion of logical expres-
sions over predicates (with four or fewer children, limited for computational reasons) are satisfied at
least once in our human play trace data?

• section_doesnt_exist_setup [b]: Does a game not have an (optional) setup section? (to allow
counteracting feature values for the setup for games that do not have a setup component)

• section_doesnt_exist_terminal [b]: Does a game not have an (optional) terminal conditions
section? (to allow counteracting feature values for the terminal conditions for games that do not have
a terminal conditions component)

• variables_used_all [b]: Are all variables defined used at least once?

• variables_used_prop [p]: What proportion of variables defined are used at least once?

• preferences_used_all [b]: Are all preferences defined referenced at least once in terminal or
scoring expressions?

• preferences_used_prop [p]: What proportion of preferences defined are referenced at least once
in terminal or scoring expressions?

• num_preferences_defined [d]: How many preferences are defined? (1-7)

• setup_objects_used [p]: What proportion of objects referenced in the setup are also referenced
in the gameplay preferences?
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• any_setup_objects_used [b]: Are any objects referenced in the setup also referenced in the
gameplay preferences?

• repeated_variables_found [b]: Are there any cases where the same variable is used twice in
the same predicate?

• repeated_variable_type_in_either [b]: Are there any cases where the same variable types is
used twice in an either quantification?

• redundant_expression_found [b]: Are there any cases where a logical expression over predi-
cates is redundant (can be trivially simplified)?

• redundant_scoring_terminal_expression_found [b]: Are there any cases where a scoring
terminal expression is redundant (can be trivially simplified)?

• unnecessary_expression_found [b]: Are there any cases where a logical expression over predi-
cates is unnecessary (contradicts itself, or is trivially true)?

• adjacent_same_modal_found [b]: Are there any cases where the same modal is used twice in a
row?

• identical_consecutive_seq_func_predicates_found [b]: Are there any cases where the
same exact predicates (and their arguments) are applied in consecutive modals (making them redun-
dant)?

• disjoint_preferences_found [b]: Are there any preferences which quantify over disjoint sets
of objects?

• disjoint_preferences_prop [p]: What proportion of preferences quantify over disjoint sets of
objects?

• disjoint_preferences_scoring_terminal_types [p]: Do the preferences referenced in the
scoring and terminal section quantify over disjoint sets of object types?

• disjoint_preferences_scoring_terminal_predicates [p]: Do the preferences referenced
in the scoring and terminal section use disjoint sets of predicates?

• disjoint_preferences_same_predicates_only [b]: Do any preferences make use solely of
the same_color, same_object, and same_type predicates?

• disjoint_seq_funcs_found [b]: Are there any cases where modals in a preference refer to
disjoint sets of variables or objects?

• disjoint_modal_predicates_found [b]: Are there any cases where modals in a preference refer
to disjoint sets of predicates?

• disjoint_modal_predicates_prop [p]: What proportion of modals in a preference refer to
disjoint sets of predicates?

• predicate_without_variables_or_agent [b]: Are there any predicates that do not reference
any variables or the agent?

• two_number_operation_found [b]: Are there any cases where an arithmetic operation is applied
to two numbers? (e.g. (+ 5 5) instead of simplifying it)

• section_without_pref_or_total_count_terminal [b]: Does the terminal section in this
game fail to reference any preferences, or the (total-time) or (total-score) tokens?

• section_without_pref_or_total_count_scoring [b]: Does the scoring section in this game
fail to reference any preferences, or the (total-time) or (total-score) tokens?

• pref_forall_used_correct [b]: For the forall over preferences syntax, if it is used, is it used
correctly in this game?

• pref_forall_used_incorrect [b]: For the forall over preferences syntax, if it is used, is it
used incorrectly in this game? (to allow learning differential values between correct and incorrect
usage)

• pref_forall_external_forall_used_correct [b]: If the external-forall-maximize or
external-forall-minimize syntax is used, is it used correctly in this game?

• pref_forall_external_forall_used_incorrect [b]: If the external-forall-maximize
or external-forall-minimize syntax is used, is it used incorrectly in this game?

• pref_forall_external_forall_used_correct [b]: If the
count-once-per-external-objects count operator is used, is it used correctly in this
game?

• pref_forall_external_forall_used_incorrect [b]: If the
count-once-per-external-objects count operator is used, is it used incorrectly in this
game?
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• pref_forall_pref_forall_correct_arity_correct [b]: If optional object names and types
are provided to a count operation, are they provided with an arity consistent with the forall variable
quantifications?

• pref_forall_pref_forall_correct_arity_incorrect [b]: If optional object names and
types are provided to a count operation, are they provided with an arity inconsistent with the forall
variable quantifications?

• pref_forall_pref_forall_correct_types_correct [b]: If optional object names and types
are provided to a count operation, are they provided with types consistent with the forall variable
quantifications?

• pref_forall_pref_forall_correct_types_incorrect [b]: If optional object names and
types are provided to a count operation, are they provided with types inconsistent with the forall
variable quantifications?

B.1 Features Most Predictive of Real or Regrown Games

The following features (in order) had the largest weight, indicating they were most predictive of
positive (real, human-generated) examples in our dataset:

1. ast_ngram_full_n_5_score

2. ast_ngram_constraints_n_5_score

3. predicate_found_in_data_prop

4. section_doesnt_exist_setup

5. ast_ngram_setup_n_5_score

6. variables_used_all

7. preferences_used_all

8. ast_ngram_scoring_n_5_score

9. setup_objects_used

10. section_doesnt_exist_terminal

The following features (in order) had the smallest weights, indicating they were most predictive of
negative (regrown) examples in our dataset:

1. pref_forall_pref_forall_correct_types_incorrect

2. pref_forall_used_incorrect

3. disjoint_seq_funcs_found

4. repeated_variables_found

5. redundant_expression_found

6. pref_forall_pref_forall_correct_arity_incorrect

7. two_number_operation_found

8. predicate_without_variables_or_agent

9. disjoint_modal_predicates_found

10. pref_forall_used_correct

C Objective function algorithm descriptions

Algorithm 1 below outlines how we train our fitness model. The number N of of positive examples is
fixed (98 in our full dataset), and fewer during cross-validation. We generate M = 1024 negatives
for each of the positive examples, and the number of features F is fixed as well. We perform
cross-validation to select hyperparameter values B ∈ {1, 2, 4}, and K ∈ {256, 512, 1025}, selecting
the set that minimizes the cross-validated loss. We optimize the model with SGD, with a learning
rate η ∈ {1e− 3, 4e− 3} also selected via cross-validation. We use weight decay with λ = 0.003
to regularize the model. We train the model for up to 25000 epochs, or until the model plateaus for
P = 500 epochs. After cross-validation, we train our final objective function on the entire dataset.
The final model we report uses B = 1 positive games per batch, K = 1024 negatives samples from
our entire dataset for that positive, a learning rate η = 4e− 3, and F = 50 features.
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Algorithm 1 Fitness model training loop

Input: Real games D+ ∈ RN××1F , regrown games D− ∈ RN×M×F

Input: Fitness model fθ : RF → R, optimizer
N positive examples, M negatives generated per positive, B batch size, F features, K negatives
sampled per positive in each epoch, P plateau epochs

Output: Converged fitness model Wθ

best model← None
best loss←∞
last improvement epoch← −1
for epoch i do

▷ Assign negatives randomly to each positive
Shuffle the first two dimensions of D−

▷ Reorder the positives in each epoch
Shuffle the first dimension of D+

for each batch do
X+ ← the next B positives ▷ X+: B × 1× F
X− ←K sampled negatives for each positive ▷ X−: B ×K × F
X ← concat(X+, X−) ▷ X: B × (1 +K)× F
Y ← fθ(X) ▷ Y : B × (1 +K)
L← softmax loss(Y ) ▷ L: scalar
Take backward step on loss and optimizer step

end for
epoch validation losses← []
for each batch in validation do

<the above procedure without the optimizer steps>
<append each batch’s loss to epoch validation losses>

end for
epoch loss← mean(epoch validation losses)
if epoch loss < best loss then

best model← copy of fθ(X)
best loss← epoch loss
last improvement epoch← i

else if i − last improvement epoch > P then
break

end if
end for
return best model

D MAP-Elites Algorithm Details

The set of behavioral characteristics used by MAP-Elites are listed below. We select behavioral
characteristics which roughly correspond to the common archetypes observed in human games or
that group semantically-similar predicates.

• The game uses the agent_holds or in_motion predicate
• The game uses the in or on predicate
• The game uses the adjacent or touch predicate
• The game uses an object in the balls category
• The game uses an object in the receptacles category
• The game uses an object in the blocks or buildings categories
• The game uses an object in the furniture (e.g. the bed or desk) or room_features

categories (e.g. the door or mirror)
• The game uses an object in the small_items (e.g. the cellphone or keys) or large_items

(e.g. the chair or laptop)
• The game uses an object in the general game_object category
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• The game contains the optional setup section

In addition, we add one more “pseudo behavioral characteristic” that explicitly captures a few general
coherence properties of games – specifically features that we expect either all plausibly human-
generated games to either exhibit or none of them to exhibit. While these features are also captured
by learned fitness function, we use this behavioral characteristic as a sort of first-stage filter: if a
game fails to meet these criteria, then it cannot reasonably be said to be “human-quality,” regardless
of its fitness evaluation. For all reported games, we ensure that each of the criteria are satisfied. The
criteria included in this behavioral characteristic include whether all all variables are defined / used in
preferences, whether all preferences are used in either terminal or scoring conditions, and whether
the game avoids a set of grammatical but obviously nonsensical or redundant expressions. There are
a total of 21 features used in this behavioral characteristic.

We begin the MAP-Elites algorithm by generating 1024 random games from the PCFG. We then sort
each of the games in descending order of fitness and add them to the archive until either (a) every
possible value of each behavioral characteristic is represented by at least one game (note that this is
not the same as every possible combination of behavioral characteristic values being represented), or
(b) at least 128 cells of the archive are occupied.

We run MAP-Elites for 8192 “generations,” where each generation consists of 750 potential updates
in which we randomly select a parent game, sample a mutation operator to apply, and potentially add
the resulting mutated game to the archive.

E Full Domain Specific Language Description

E.1 DSL Grammar Definitions

A game is defined by a name, and is expected to be valid in a particular domain, also referenced
by a name. A game is defined by four elements, two of them mandatory, and two optional. The
mandatory ones are the ⟨constraints⟩ section, which defines gameplay preferences, and the ⟨scoring⟩
section, which defines how gameplay preferences are counted to arrive at a score for the player in
the game. The optional ones are the ⟨setup⟩ section, which defines how the environment must be
prepared before gameplay can begin, and the ⟨terminal⟩ conditions, which specify when and how the
game ends.

⟨game⟩ ::= (define (game ⟨ID⟩)
(:domain ⟨ID⟩)
(:setup ⟨setup⟩)
(:constraints ⟨constraints⟩)
(:terminal ⟨terminal⟩)
(:scoring ⟨scoring⟩)
)

⟨id⟩ ::= /[a-z0-9][a-z0-9]+/ # a letter or digit, followed by one or more letters, digits, or dashes

We will now proceed to introduce and define the syntax for each of these sections, followed by
the non-grammar elements of our domain: predicates, functions, and types. Finally, we provide a
mapping between some aspects of our gameplay preference specification and linear temporal logic
(LTL) operators.

E.1.1 Setup

The setup section specifies how the environment must be transformed from its deterministic initial
conditions to a state gameplay can begin at. Currently, a particular environment room always appears
in the same initial conditions, in terms of which objects exist and where they are placed. Participants
in our experiment could, but did not have to, specify how the room must be setup so that their game
could be played.

The initial ⟨setup⟩ element can expand to conjunctions, disjunctions, negations, or quantifications of
itself, and then to the ⟨setup-statement⟩ rule. ⟨setup-statement⟩ elements specify two different types
of setup conditions: either those that must be conserved through gameplay (‘game-conserved’), or
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those that are optional through gameplay (‘game-optional’). These different conditions arise as some
setup elements must be maintain through gameplay (for example, a participant specified to place a
bin on the bed to throw balls into, it shouldn’t move unless specified otherwise), while other setup
elements can or must change (if a participant specified to set the balls on the desk to throw them, an
agent will have to pick them up (and off the desk) in order to throw them).

Inside the ⟨setup-statement⟩ tags we find ⟨super-predicate⟩ elements, which are logical operations and
quantifications over other ⟨super-predicate⟩ elements, function comparisons (⟨function-comparison⟩,
which like predicates also resolve to a truth value), and predicates (⟨predicate⟩). Function comparisons
usually consist of a comparison operator and two arguments, which can either be the evaluation of a
function or a number. The one exception is the case where the comparison operator is the equality
operator (=), in which case any number of arguments can be provided. Finally, the ⟨predicate⟩
element expands to a predicate acting on one or more objects or variables. For a full list of the
predicates we found ourselves using so far, see subsubsection E.2.1.

⟨setup⟩ ::= (and ⟨setup⟩ ⟨setup⟩+) # A setup can be expanded to a conjunction, a disjunction, a
quantification, or a setup statement (see below).

| (or ⟨setup⟩ ⟨setup⟩+)
| (not ⟨setup⟩)
| (exists (⟨typed list(variable)⟩) ⟨setup⟩)
| (forall (⟨typed list(variable)⟩) ⟨setup⟩)
| ⟨setup-statement⟩

⟨setup-statement⟩ ::= # A setup statement specifies that a predicate is either optional during gameplay
or must be preserved during gameplay.

| (game-conserved ⟨super-predicate⟩)
| (game-optional ⟨super-predicate⟩)

⟨super-predicate⟩ ::= # A super-predicate is a conjunction, disjunction, negation, or quantification
over another super-predicate. It can also be directly a function comparison or a predicate.

| (and ⟨super-predicate⟩+)
| (or ⟨super-predicate⟩+)
| (not ⟨super-predicate⟩
| (exists (⟨typed list(variable)⟩) ⟨super-predicate⟩)
| (forall (⟨typed list(variable)⟩) ⟨super-predicate⟩)
| ⟨f-comp⟩
| ⟨predicate⟩

⟨function-comparison⟩ ::= # A function comparison: either comparing two function evaluations, or
checking that two ore more functions evaluate to the same result.

| (⟨comp-op⟩ ⟨function-eval-or-number⟩ ⟨function-eval-or-number⟩)
| (= ⟨function-eval-or-number⟩+)

⟨comp-op⟩ ::= 〈 | 〈= | = | 〉 | 〉= # Any of the comparison operators.

⟨function-eval-or-number⟩ ::= ⟨function-eval⟩ | ⟨comparison-arg-number⟩

⟨comparison-arg-number⟩ ::= ⟨number⟩

⟨number⟩ ::= /-?\d*\.?\d+/ # A number, either an integer or a float.

⟨function-eval⟩ ::= # See valid expansions in a separate section below

⟨variable-list⟩ ::= (⟨variable-def ⟩+) # One or more variables definitions, enclosed by parentheses.

⟨variable-def ⟩ ::= ⟨variable-type-def ⟩ | ⟨color-variable-type-def ⟩ | ⟨orientation-variable-type-def ⟩
| ⟨side-variable-type-def ⟩ # Colors, sides, and orientations are special types as they are not
interchangable with objects.

⟨variable-type-def ⟩ ::= ⟨variable⟩+ - ⟨type-def ⟩ # Each variable is defined by a variable (see next)
and a type (see after).
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⟨color-variable-type-def ⟩ ::= ⟨color-variable⟩+ - ⟨color-type-def ⟩ # A color variable is defined by
a variable (see below) and a color type.

⟨orientation-variable-type-def ⟩ ::= ⟨orientation-variable⟩+ - ⟨orientation-type-def ⟩ # An orienta-
tion variable is defined by a variable (see below) and an orientation type.

⟨side-variable-type-def ⟩ ::= ⟨side-variable⟩+ - ⟨side-type-def ⟩ # A side variable is defined by a
variable (see below) and a side type.

⟨variable⟩ ::= /\?[a-w][a-z0-9]*/ # a question mark followed by a lowercase a-w, optionally followed
by additional letters or numbers.

⟨color-variable⟩ ::= /\?x[0-9]*/ # a question mark followed by an x and an optional number.

⟨orientation-variable⟩ ::= /\?y[0-9]*/ # a question mark followed by an y and an optional number.

⟨side-variable⟩ ::= /\?z[0-9]*/ # a question mark followed by an z and an optional number.

⟨type-def ⟩ ::= ⟨object-type⟩ | ⟨either-types⟩ # A veriable type can either be a single name, or a list of
type names, as specified below

⟨color-type-def ⟩ ::= ⟨color-type⟩ | ⟨either-color-types⟩ # A color variable type can either be a single
color name, or a list of color names, as specified below

⟨orientation-type-def ⟩ ::= ⟨orientation-type⟩ | ⟨either-orientation-types⟩ # An orientation variable
type can either be a single orientation name, or a list of orientation names, as specified below

⟨side-type-def ⟩ ::= ⟨side-type⟩ | ⟨either-side-types⟩ # A side variable type can either be a single side
name, or a list of side names, as specified below

⟨either-types⟩ ::= (either ⟨object-type⟩+)

⟨either-color-types⟩ ::= (either ⟨color⟩+)

⟨either-orientation-types⟩ ::= (either ⟨orientation⟩+)

⟨either-side-types⟩ ::= (either ⟨side⟩+)

⟨object-type⟩ ::= ⟨name⟩

⟨name⟩ ::= /[A-Za-z][A-za-z0-9_]+/ # a letter, followed by one or more letters, digits, or underscores

⟨color-type⟩ ::= ’color’

⟨color⟩ ::= ’blue’ | ’brown’ | ’gray’ | ’green’ | ’orange’ | ’pink’ | ’purple’ | ’red’ | ’tan’ | ’white’ |
’yellow’

⟨orientation-type⟩ ::= ’orientation’

⟨orientation⟩ ::= ’diagonal’ | ’sideways’ | ’upright’ | ’upside_down’

⟨side-type⟩ ::= ’side’

⟨side⟩ ::= ’back’ | ’front’ | ’left’ | ’right’

⟨predicate⟩ ::= # See valid expansions in a separate section below

⟨predicate-or-function-term⟩ ::= ⟨object-name⟩ | ⟨variable⟩ # A predicate or function term can either
be an object name (from a small list allowed to be directly referred to) or a variable.

⟨predicate-or-function-color-term⟩ ::= ⟨color⟩ | ⟨color-variable⟩
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⟨predicate-or-function-orientation-term⟩ ::= ⟨orientation⟩ | ⟨orientation-variable⟩

⟨predicate-or-function-side-term⟩ ::= ⟨side⟩ | ⟨side-variable⟩

⟨predicate-or-function-type-term⟩ ::= ⟨object-type⟩ | ⟨variable⟩

⟨object-name⟩ ::= ’agent’ | ’bed’ | ’desk’ | ’door’ | ’floor’ | ’main_light_switch’ | ’mirror’ |
’room_center’ | ’rug’ | ’side_table’ | ’bottom_drawer’ | ’bottom_shelf’ | ’east_sliding_door’
| ’east_wall’ | ’north_wall’ | ’south_wall’ | ’top_drawer’ | ’top_shelf’ | ’west_sliding_door’ |
’west_wall’

E.1.2 Gameplay Preferences

The gameplay preferences specify the core of a game’s semantics, capturing how a game should
be played by specifying temporal constraints over predicates. The name for the overall element,
⟨constraints⟩, is inherited from the PDDL element with the same name.

The ⟨constraints⟩ elements expand into one or more preference definitions, which are defined using
the ⟨pref-def⟩ element. A ⟨pref-def⟩ either expands to a single preference (⟨preference⟩), or to a
⟨pref-forall⟩ element, which specifies variants of the same preference for different objects, which can
be treated differently in the scoring section. A ⟨preference⟩ is defined by a name and a ⟨preference-
quantifier⟩, which expands to an optional quantification (exists, forall, or neither), inside of which we
find the ⟨preference-body⟩.
A ⟨preference-body⟩ expands into one of two options: The first is a set of conditions that should
be true at the end of gameplay, using the ⟨at-end⟩ operator. Inside an ⟨at-end⟩ we find a ⟨super-
predicate⟩, which like in the setup section, expands to logical operations or quantifications over other
⟨super-predicate⟩ elements, function comparisons, or predicates.

The second option is specified using the ⟨then⟩ syntax, which defines a series of temporal conditions
that should hold over a sequence of states. Under a ⟨then⟩ operator, we find two or more sequence
functions (⟨seq-func⟩), which define the specific conditions that must hold and how many states we
expect them to hold for. We assume that there are no unaccounted states between the states accounted
for by the different operators – in other words, the ⟨then⟩ operators expects to find a sequence of
contiguous states that satisfy the different sequence functions. The operators under a ⟨then⟩ operator
map onto linear temporal logic (LTL) operators, see ?? for the mapping and examples.

The ⟨once⟩ operator specifies a predicate that must hold for a single world state. If a ⟨once⟩ operators
appears as the first operator of a ⟨then⟩ definition, and a sequence of states Sa, Sa+1, · · · , Sb satisfy
the ⟨then⟩ operator, it could be the case that the predicate is satisfied before this sequence of states (e.g.
by Sa−1, Sa−2, and so forth). However, only the final such state, Sa, is required for the preference
to be satisfied. The same could be true at the end of the sequence: if a ⟨then⟩ operator ends with a
⟨once⟩ term, there could be other states after the final state (Sb+1, Sb+2, etc.) that satisfy the predicate
in the ⟨once⟩ operator, but only one is required. The ⟨once-measure⟩ operator is a slight variation of
the ⟨once⟩ operator, which in addition to a predicate, takes in a function evaluation, and measures the
value of the function evaluated at the state that satisfies the preference. This function value can then
be used in the scoring definition, see subsubsection E.1.4.

A second type of operator that exists is the ⟨hold⟩ operator. It specifies that a predicate must hold true
in every state between the one in which the previous operator is satisfied, and until one in which the
next operator is satisfied. If a ⟨hold⟩ operator appears at the beginning or an end of a ⟨then⟩ sequence,
it can be satisfied by a single state, Otherwise, it must be satisfied until the next operator is satisfied.
For example, in the minimal definition below:
(then

(once (pred\_a))
(hold (pred\_b))
(once (pred\_c))

)

To find a sequence of states Sa, Sa+1, · · · , Sb that satisfy this ⟨then⟩ operator, the following
conditions must hold true: (1) pred_a is true at state Sa, (2) pred_b is true in all states
Sa+1, Sa+2, · · · , Sb−2, Sb−1, and (3) pred_c is true in state Sb. There is no minimal number of
states that the hold predicate must hold for.
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The last operator is ⟨hold-while⟩, which offers a variation of the ⟨hold⟩ operator. A ⟨hold-while⟩
receives at least two predicates. The first acts the same as the predicate in a ⟨hold⟩ operator. The
second (and third, and any subsequent ones), must hold true for at least one state while the first
predicate holds, and must occur in the order specified. In the example above, if we substitute (hold (

pred\_b)) for (hold−while (pred\_b)(pred\_d)(pred\_e)), we now expect that in addition to pred_b being true in all states
Sa+1, Sa+2, · · · , Sb−2, Sb−1, that there is some state Sd, d ∈ [a+ 1, b− 1] where pred_d holds, and
another state, Se, e ∈ [d+ 1, b− 1] where pred_e holds.

⟨constraints⟩ ::= ⟨pref-def ⟩ | (and ⟨pref-def ⟩+) # One or more preferences.

⟨pref-def ⟩ ::= ⟨pref-forall⟩ | ⟨preference⟩ # A preference definitions expands to either a forall quan-
tification (see below) or to a preference.

⟨pref-forall⟩ ::= (forall ⟨variable-list⟩ ⟨preference⟩) # this syntax is used to specify variants of the
same preference for different objects, which differ in their scoring. These are specified using the
⟨pref-name-and-types⟩ syntax element’s optional types, see scoring below.

⟨preference⟩ ::= (preference ⟨name⟩ ⟨preference-quantifier⟩) # A preference is defined by a name
and a quantifer that includes the preference body.

⟨preference-quantifier⟩ ::= # A preference can quantify exsistentially or universally over one or more
variables, or none.

| (exists (⟨variable-list⟩) ⟨preference-body⟩
| (forall (⟨variable-list⟩) ⟨preference-body⟩)
| ⟨preference-body⟩)

⟨preference-body⟩ ::= ⟨then⟩ | ⟨at-end⟩

⟨at-end⟩ ::= (at-end ⟨super-predicate⟩) # Specifies a prediicate that should hold in the terminal state.

⟨then⟩ ::= (then ⟨seq-func⟩ ⟨seq-func⟩+) # Specifies a series of conditions that should hold over
a sequence of states – see below for the specific operators (⟨seq-func⟩s), and Section 2 for
translation of these definitions to linear temporal logicl (LTL).

⟨seq-func⟩ ::= ⟨once⟩ | ⟨once-measure⟩ | ⟨hold⟩ | ⟨hold-while⟩ # Four of thse temporal sequence
functions currently exist:

⟨once⟩ ::= (once ⟨super-predicate⟩) # The predicate specified must hold for a single world state.

⟨once-measure⟩ ::= (once ⟨super-predicate⟩ ⟨function-eval⟩) # The predicate specified must hold for
a single world state, and record the value of the function evaluation, to be used in scoring.

⟨hold⟩ ::= (hold ⟨super-predicate⟩) # The predicate specified must hold for every state between the
previous temporal operator and the next one.

⟨hold-while⟩ ::= (hold-while ⟨super-predicate⟩ ⟨super-predicate⟩+) # The first predicate specified
must hold for every state between the previous temporal operator and the next one. While it does,
at least one state must satisfy each of the predicates specified in the second argument onward

For the full specification of the ⟨super-predicate⟩ element, see subsubsection E.1.1 above.

E.1.3 Terminal Conditions

Specifying explicit terminal conditions is optional, and while some of our participants chose to do so,
many did not. Conditions explicitly specified in this section terminate the game. If none are specified,
a game is assumed to terminate whenever the player chooses to end the game.

The terminal conditions expand from the ⟨terminal⟩ element, which can expand to logical conditions
on nested ⟨terminal⟩ elements, or to a terminal comparison. The terminal comparison (⟨terminal-
comp⟩) expands to one of three different types of copmarisons: ⟨terminal-time-comp⟩, a comparison
between the total time spent in the game ((total−time)) and a time number token, ⟨terminal-score-comp⟩,
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a comparison between the total score ((total−score)) and a score number token, or ⟨terminal-pref-count-
comp⟩, a comparison between a scoring expression (⟨scoring-expr⟩, see below) and a preference
count number token. In most cases, the scoring expression is a preference counting operation.

⟨terminal⟩ ::= # The terminal condition is specified by a conjunction, disjunction, negation, or
comparson (see below).

| (and ⟨terminal⟩+)
| (or ⟨terminal⟩+)
| (not ⟨terminal⟩)
| ⟨terminal-comp⟩

⟨terminal-comp⟩ ::= # We support three ttypes of terminal comparisons:
| ⟨terminal-time-comp⟩
| ⟨terminal-score-comp⟩
| ⟨terminal-pref-count-comp⟩

⟨terminal-time-comp⟩ ::= (⟨comp-op⟩ (total-time) ⟨time-number⟩) # The total time of the game must
satisfy the comparison.

⟨terminal-score-comp⟩ ::= (⟨comp-op⟩ (total-score) ⟨score-number⟩) # The total score of the game
must satisfy the comparison.

⟨terminal-pref-count-comp⟩ ::= (⟨comp-op⟩ ⟨scoring-expr⟩ ⟨preference-count-number⟩) # The num-
ber of times the preference specified by the name and types must satisfy the comparison.

⟨time-number⟩ ::= ⟨number⟩ # Separate type so the we can learn a separate distribution over times
than, say, scores.

⟨score-number⟩ ::= ⟨number⟩

⟨preference-count-number⟩ ::= ⟨number⟩

⟨comp-op⟩ ::= 〈 | 〈= | = | 〉 | 〉=

For the full specification of the ⟨scoring-expr⟩ element, see subsubsection E.1.4 below.

E.1.4 Scoring

Scoring rules specify how to count preferences (count once, once for each unique objects that fulfill
the preference, each time a preference is satisfied, etc.), and the arithmetic to combine preference
counts to a final score in the game.

A ⟨scoring-expr⟩ can be defined by arithmetic operations on other scoring expressions, references to
the total time or total score (for instance, to provide a bonus if a certain score is reached), comparisons
between scoring expressions (⟨scoring-comp⟩), or by preference evaluation rules. Various preference
evaluation modes can expand the ⟨preference-eval⟩ rule, see the full list and descriptions below.

⟨scoring⟩ ::= ⟨scoring-expr⟩ # The scoring conditions maximize a scoring expression.

⟨scoring-expr⟩ ::= # A scoring expression can be an arithmetic operation over other scoring expres-
sions, a reference to the total time or score, a comparison, or a preference scoring evaluation.

| ⟨scoring-external-maximize⟩
| ⟨scoring-external-minimize⟩
| (⟨multi-op⟩ ⟨scoring-expr⟩+) # Either addition or multiplication.
| (⟨binary-op⟩ ⟨scoring-expr⟩ ⟨scoring-expr⟩) # Either division or subtraction.
| (- ⟨scoring-expr⟩)
| (total-time)
| (total-score)
| ⟨scoring-comp⟩
| ⟨preference-eval⟩
| ⟨scoring-number-value⟩
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⟨scoring-external-maximize⟩ ::= (external-forall-maximize ⟨scoring-expr⟩) # For any preferences
under this expression inside a (forall ...), score only for the single externally-quantified object
that maximizes this scoring expression.

⟨scoring-external-minimize⟩ ::= (external-forall-minimize ⟨scoring-expr⟩) # For any preferences
under this expression inside a (forall ...), score only for the single externally-quantified object
that minimizes this scoring expression.

⟨scoring-comp⟩ ::= # A scoring comparison: either comparing two expressions, or checking that two
ore more expressions are equal.

| (⟨comp-op⟩ ⟨scoring-expr⟩ ⟨scoring-expr⟩)
| (= ⟨scoring-expr⟩+)

⟨preference-eval⟩ ::= # A preference evaluation applies one of the scoring operators (see below) to a
particular preference referenced by name (with optional types).

| ⟨count⟩
| ⟨count-overlapping⟩
| ⟨count-once⟩
| ⟨count-once-per-objects⟩
| ⟨count-measure⟩
| ⟨count-unique-positions⟩
| ⟨count-same-positions⟩
| ⟨count-once-per-external-objects⟩

⟨count⟩ ::= (count ⟨pref-name-and-types⟩) # Count how many times the preference is satisfied by
non-overlapping sequences of states.

⟨count-overlapping⟩ ::= (count-overlapping ⟨pref-name-and-types⟩) # Count how many times the
preference is satisfied by overlapping sequences of states.

⟨count-once⟩ ::= (count-once ⟨pref-name-and-types⟩) # Count whether or not this preference was
satisfied at all.

⟨count-once-per-objects⟩ ::= (count-once-per-objects ⟨pref-name-and-types⟩) # Count once for each
unique combination of objects quantified in the preference that satisfy it.

⟨count-measure⟩ ::= (count-measure ⟨pref-name-and-types⟩) # Can only be used in preferences
including a ⟨once-measure⟩ modal, maps each preference satistifaction to the value of the
function evaluation in the ⟨once-measure⟩.

⟨count-unique-positions⟩ ::= (count-unique-positions ⟨pref-name-and-types⟩) # Count how many
times the preference was satisfied with quantified objects that remain stationary within each
preference satisfcation, and have different positions between different satisfactions.

⟨count-same-positions⟩ ::= (count-same-positions ⟨pref-name-and-types⟩) # Count how many times
the preference was satisfied with quantified objects that remain stationary within each preference
satisfcation, and have (approximately) the same position between different satisfactions.

⟨count-once-per-external-objects⟩ ::= (count-once-per-external-objects ⟨pref-name-and-types⟩) #
Similarly to count-once-per-objects, but counting only for each unique object or combina-
tion of objects quantified in the (forall ...) block including this preference.

⟨pref-name-and-types⟩ ::= ⟨name⟩ ⟨pref-object-type⟩∗ # The optional ⟨pref-object-type⟩s are used
to specify a particular instance of the preference for a given object, see the ⟨pref-forall⟩ syntax
above.

⟨pref-object-type⟩ ::= : ⟨type-name⟩ # The optional type name specification for the above syntax.
For example, pref-name:dodgeball would refer to the preference where the first quantified object
is a dodgeball.

⟨scoring-number-value⟩ ::= ⟨number⟩
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E.2 Non-Grammar Definitions

E.2.1 Predicates

The following section describes the predicates we define. Predicates operate over a specified number
of arguments, which can be variables or object names, and return a boolean value (true/false).
(above <arg1> <arg2>) [5 references] ; Is the first object above the second object?
(adjacent <arg1> <arg2>) [78 references] ; Are the two objects adjacent? [will probably be implemented as distance below some threshold]
(adjacent_side <3 or 4 arguments>) [15 references] ; Are the two objects adjacent on the sides specified? Specifying a side for the second object is optional, allowing

to specify <obj1> <side1> <obj2> or <obj1> <side1> <obj2> <side2>
(agent_crouches ) [2 references] ; Is the agent crouching?
(agent_holds <arg1>) [327 references] ; Is the agent holding the object?
(between <arg1> <arg2> <arg3>) [7 references] ; Is the second object between the first object and the third object?
(broken <arg1>) [2 references] ; Is the object broken?
(equal_x_position <arg1> <arg2>) [2 references] ; Are these two objects (approximately) in the same x position? (in our environment, x, z are spatial coordinates, y

is the height)
(equal_z_position <arg1> <arg2>) [5 references] ; Are these two objects (approximately) in the same z position? (in our environment, x, z are spatial coordinates, y is

the height)
(faces <arg1> <arg2>) [6 references] ; Is the front of the first object facing the front of the second object?
(game_over ) [4 references] ; Is this the last state of gameplay?
(game_start ) [3 references] ; Is this the first state of gameplay?
(in <arg1> <arg2>) [121 references] ; Is the second argument inside the first argument? [a containment check of some sort, for balls in bins, for example]
(in_motion <arg1>) [315 references] ; Is the object in motion?
(is_setup_object <arg1>) [13 references] ; Is this the object of the same type referenced in the setup?
(object_orientation <arg1> <arg2>) [14 references] ; Is the first argument, an object, in the orientation specified by the second argument? Used to check if an object

is upright or upside down
(on <arg1> <arg2>) [168 references] ; Is the second object on the first one?
(open <arg1>) [3 references] ; Is the object open? Only valid for objects that can be opened, such as drawers.
(opposite <arg1> <arg2>) [4 references] ; So far used only with walls, or sides of the room, to specify two walls opposite each other in conjunction with other

predicates involving these walls
(rug_color_under <arg1> <arg2>) [11 references] ; Is the color of the rug under the object (first argument) the color specified by the second argument?
(same_color <arg1> <arg2>) [23 references] ; If two objects, do they have the same color? If one is a color, does the object have that color?
(same_object <arg1> <arg2>) [7 references] ; Are these two variables bound to the same object?
(same_type <arg1> <arg2>) [14 references] ; Are these two objects of the same type? Or if one is a direct reference to a type, is this object of that type?
(toggled_on <arg1>) [4 references] ; Is this object toggled on?
(touch <arg1> <arg2>) [48 references] ; Are these two objects touching?

E.2.2 Functions

he following section describes the functions we define. Functions operate over a specified number of
arguments, which can be variables or object names, and return a number.
(building_size <arg1>) [2 references] ; Takes in an argument of type building, and returns how many objects comprise the building (as an integer).
(distance <arg1> <arg2>) [114 references] ; Takes in two arguments of type object, and returns the distance between the two objects (as a floating point number).
(distance_side <arg1> <arg2> <arg3>) [6 references] ; Similarly to the adjacent_side predicate, but applied to distance. Takes in three or four arguments, either <

obj1> <side1> <obj2> or <obj1> <side1> <obj2> <side2>, and returns the distance between the first object on the side specified to the second object (
optionally to its specified side).

(x_position <arg1>) [4 references] ; Takes in an argument of type object, and returns the x position of the object (as a floating point number).

E.2.3 Types

The types are currently not defined as part of the grammar, other than the small list of ⟨object-
name⟩ tokens that can be directly referred to, and are marked with an asterisk below. The following
enumerates all expansions of the various ⟨type⟩ rules:
game_object [33 references] ; Parent type of all objects
agent* [90 references] ; The agent
building [20 references] ; Not a real game object, but rather, a way to refer to structures the agent builds
−−−−−−−−−− (* \textbf{Blocks} *) −−−−−−−−−−
block [28 references] ; Parent type of all block types:
bridge_block [11 references]
bridge_block_green [0 references]
bridge_block_pink [0 references]
bridge_block_tan [0 references]
cube_block [38 references]
cube_block_blue [8 references]
cube_block_tan [1 reference]
cube_block_yellow [8 references]
cylindrical_block [11 references]
cylindrical_block_blue [0 references]
cylindrical_block_green [0 references]
cylindrical_block_tan [0 references]
flat_block [5 references]
flat_block_gray [0 references]
flat_block_tan [0 references]
flat_block_yellow [0 references]
pyramid_block [13 references]
pyramid_block_blue [3 references]
pyramid_block_red [2 references]
pyramid_block_yellow [2 references]
tall_cylindrical_block [7 references]
tall_cylindrical_block_green [0 references]
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tall_cylindrical_block_tan [0 references]
tall_cylindrical_block_yellow [0 references]
tall_rectangular_block [0 references]
tall_rectangular_block_blue [0 references]
tall_rectangular_block_green [0 references]
tall_rectangular_block_tan [0 references]
triangle_block [3 references]
triangle_block_blue [0 references]
triangle_block_green [0 references]
triangle_block_tan [0 references]
−−−−−−−−−− (* \textbf{Balls} *) −−−−−−−−−−
ball [40 references] ; Parent type of all ball types:
beachball [23 references]
basketball [18 references]
dodgeball [108 references]
dodgeball_blue [6 references]
dodgeball_red [4 references]
dodgeball_pink [8 references]
golfball [25 references]
golfball_green [3 references]
golfball_white [0 references]
−−−−−−−−−− (* \textbf{Colors} *) −−−−−−−−−−
color [6 references] ; Likewise, not a real game object, mostly used to refer to the color of the rug under an object
blue [6 references]
brown [5 references]
gray [0 references]
green [8 references]
orange [3 references]
pink [19 references]
purple [4 references]
red [8 references]
tan [2 references]
white [1 reference]
yellow [14 references]
−−−−−−−−−− (* \textbf{Furniture} *) −−−−−−−−−−
bed* [51 references]
blinds [2 references] ; The blinds on the windows
desk* [40 references]
desktop [6 references]
main_light_switch* [3 references] ; The main light switch on the wall
side_table* [4 references] ; The side table/nightstand next to the bed
shelf_desk [2 references] ; The shelves under the desk
−−−−−−−−−− (* \textbf{Large moveable/interactable objects} *) −−−−−−−−−−
book [11 references]
chair [18 references]
laptop [7 references]
pillow [14 references]
teddy_bear [14 references]
−−−−−−−−−− (* \textbf{Orientations} *) −−−−−−−−−−
diagonal [1 reference]
sideways [2 references]
upright [10 references]
upside_down [1 reference]
−−−−−−−−−− (* \textbf{Ramps} *) −−−−−−−−−−
ramp [0 references] ; Parent type of all ramp types:
curved_wooden_ramp [17 references]
triangular_ramp [10 references]
triangular_ramp_green [1 reference]
triangular_ramp_tan [0 references]
−−−−−−−−−− (* \textbf{Receptacles} *) −−−−−−−−−−
doggie_bed [26 references]
hexagonal_bin [123 references]
drawer [5 references] ; Either drawer in the side table
bottom_drawer* [0 references] ; The bottom of the two drawers in the nightstand near the bed.
top_drawer* [6 references] ; The top of the two drawers in the nightstand near the bed.
−−−−−−−−−− (* \textbf{Room features} *) −−−−−−−−−−
door* [9 references] ; The door out of the room
floor* [26 references]
mirror* [0 references]
poster* [0 references]
room_center* [0 references]
rug* [37 references]
shelf [10 references]
bottom_shelf* [1 reference]
top_shelf* [5 references]
sliding_door [2 references] ; The sliding doors on the south wall (big windows)
east_sliding_door* [1 reference] ; The eastern of the two sliding doors (the one closer to the desk)
west_sliding_door* [0 references] ; The western of the two sliding doors (the one closer to the bed)
wall [17 references] ; Any of the walls in the room
east_wall* [0 references] ; The wall behind the desk
north_wall* [1 reference] ; The wall with the door to the room
south_wall* [2 references] ; The wall with the sliding doors
west_wall* [3 references] ; The wall the bed is aligned to
−−−−−−−−−− (* \textbf{Small objects} *) −−−−−−−−−−
alarm_clock [8 references]
cellphone [6 references]
cd [6 references]
credit_card [1 reference]
key_chain [5 references]
lamp [2 references]
mug [3 references]
pen [2 references]
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pencil [2 references]
watch [2 references]
−−−−−−−−−− (* \textbf{Sides} *) −−−−−−−−−−
back [3 references]
front [9 references]
left [3 references]
right [2 references]

E.3 Modal Definitions in Linear Temporal Logic

E.3.1 Linear Temporal Logic definitions

We offer a mapping between the temporal sequence functions defined in subsubsection E.1.2 and
linear temporal logic (LTL) operators. As we were creating this DSL, we found that the syntax of the
⟨then⟩ operator felt more convenient than directly writing down LTL, but we hope the mapping helps
reason about how we see our temporal operators functioning. LTL offers the following operators,
using φ and ψ as the symbols (in our case, predicates). Assume the following formulas operate
sequence of states S0, S1, · · · , Sn:

• Next, Xψ: at the next timestep, ψ will be true. If we are at timestep i, then Si+1 ⊢ ψ
• Finally, Fψ: at some future timestep, ψ will be true. If we are at timestep i, then ∃j > i :
Sj ⊢ ψ

• Globally, Gψ: from this timestep on, ψ will be true. If we are at timestep i, then ∀j : j ≥
i : Sj ⊢ ψ

• Until, ψUφ: ψ will be true from the current timestep until a timestep at which φ is true. If
we are at timestep i, then ∃j > i : ∀k : i ≤ k < j : Sk ⊢ ψ, and Sj ⊢ φ.

• Strong release, ψMφ: the same as until, but demanding that both ψ and φ are true
simultaneously: If we are at timestep i, then ∃j > i : ∀k : i ≤ k ≤ j : Sk ⊢ ψ, and Sj ⊢ φ.
Aside: there’s also a weak until, ψWφ, which allows for the case where the second is
never true, in which case the first must hold for the rest of the sequence. Formally, if we
are at timestep i, if ∃j > i : ∀k : i ≤ k < j : Sk ⊢ ψ, and Sj ⊢ φ, and otherwise,
∀k ≥ i : Sk ⊢ ψ. Similarly there’s release, which is the similar variant of strong release.
We’re leaving those two as an aside since we don’t know we’ll need them.

E.3.2 Satisfying a ⟨then⟩ operator

Formally, to satisfy a preference using a ⟨then⟩ operator, we’re looking to find a sub-sequence of
S0, S1, · · · , Sn that satisfies the formula we translate to. We translate a ⟨then⟩ operator by translating
the constituent sequence-functions (⟨once⟩, ⟨hold⟩, ⟨while-hold⟩)1 to LTL. Since the translation of
each individual sequence function leaves the last operand empty, we append a ‘true’ (⊤) as the final
operand, since we don’t care what happens in the state after the sequence is complete.

(once ψ) := ψX · · ·
(hold ψ) := ψU · · ·
(hold-while ψ α β · · · ν) := (ψMα)X(ψMβ)X · · ·X(ψMν)XψU · · · where the last ψU · · · allows
for additional states satisfying ψ until the next modal is satisfied.

For example, a sequence such as the following, which signifies a throw attempt:
(then

(once (agent_holds ?b))
(hold (and (not (agent_holds ?b)) (in_motion ?b)))
(once (not (in_motion ?b)))

)

Can be translated to LTL using ψ := (agent_holds ?b), φ := (in_motion ?b) as:

ψX(¬ψ ∧ φ)U(¬φ)X⊤
Here’s another example:

1These are the ones we’ve used so far in the interactive experiment dataset, even if we previously defined
other ones, too.
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(then
(once (agent_holds ?b)) (* \color{blue} α*)
(hold−while

(and (not (agent_holds ?b)) (in_motion ?b)) (* \color{blue} β *)
(touch ?b ?r) (* \color{blue} γ*)

)
(once (and (in ?h ?b) (not (in_motion ?b)))) (* \color{blue} δ*)

)

If we translate each predicate to the letter appearing in blue at the end of the line, this translates to:

αX(βMγ)XβUδX⊤
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