Goals as Reward-Producing Programs

Guy Davidson®"t, Graham Todd#", Julian Togeliusﬁ, Todd M. Gureckis?, Brenden M. Lake® 7
“Center for Data Science, PGame Innovation Lab, 7Department of Psychology

New York University

*: Co-first authorship

t: Corresponding author: guy.davidson@nyu.edu

Abstract

People are remarkably capable of generating their own goals, beginning
with child’s play and continuing into adulthood. Despite considerable
empirical and computational work on goals and goal-oriented behavior,
models are still far from capturing the richness of everyday human goals.
Here, we bridge this gap by collecting a dataset of human-generated play-
ful goals, modeling them as reward-producing programs, and generating
novel human-like goals through program synthesis. Reward-producing
programs capture the rich semantics of goals through symbolic operations
that compose, add temporal constraints, and allow for program execution
on behavioral traces to evaluate progress. To build a generative model
of goals, we learn a fitness function over the infinite set of possible goal
programs and sample novel goals with a quality-diversity algorithm. Hu-
man evaluators found model generations, when constrained to originate
from partitions of program space occupied by human examples, indistin-
guishable from human-created games. We also discovered that our model’s
internal fitness scores predict games that are evaluated as more fun to play
and more human-like.

Understanding how humans create, represent, and reason about goals is crucial to under-
standing human behavior. Goals are pervasive throughout psychology [25] 6 27], having
been studied from perspectives such as motivation [40, 26, 11], personality and social psy-
chology [28,167], and learning and decision-making [61} 60]. But what is a goal? Elliot &
Fryer offer the workable, albeit simplified definition: a representation of a future object to
be approached or avoided (see also [27] [60]). Reinforcement learning offers another formu-
lation, operationalizing goals as maximizing cumulative reward over a series of steps [77].
Typical goals in reinforcement learning tasks include reaching a target location, winning in
a video or board game [59], or placing an object in a specified position (e.g., [Figure Th), such
that success can be characterized by reaching a target state.

In contrast, people routinely create novel, idiosyncratic goals with richness beyond these
common modeling settings. Chu et al. [19] report the example of Gareth Wild, who set an
unusual goal for himself to park in every spot in a particular grocery store’s parking lot
(Figure 1p). Children routinely devise fun and compelling goals without external guidance,
such as creating a “truck carrier truck” (Figure 1) or stacking as many blocks as possible
in a single tower (Figure 1d). Beyond being fun, these playful goals play a crucial role in
learning to structure and solve arbitrary problems [18] 52} 3]. Indeed, it has been argued
that autonomously setting and achieving goals is a core component of human intelligence
[19) le4].

We propose a framework for modeling human goal generation as synthesizing reward-
producing programs bottom row). There are several advantages to representing
goals as symbolic programs, that map an agent’s behavior to a reward score indicating the
degree of success. First, a structured language facilitates the compositional reuse of motifs
across disparate goals. Such reuse makes capturing the wide range of human creativity in
goal creation substantially more tractable: In, we illustrate a simple ball-throwing
game (in black) and four distinct variants (in red, blue, pink, and brown) composed in part

from shared components: balls being thrown (highlighted in yellow), the thrown ball hitting
something (orange), and the thrown ball landing somewhere (green). Second, our choice
of representation makes goal semantics explicit. The particular grammatical elements of
our representation each fulfill particular roles, such as predicates (i.e., specific and evaluable
relations between objects, colored orange in the programs in [Figure T) and temporal modals
(i.e., relationships in time between goal components, such as “until”and ‘then’ in[Figure T).
Finally, goals-as-programs are executable; that is, they can be computationally interpreted

to detect when a goal is entirely or partially achieved , each program would be
interpreted and provide a score only when the matching throw trajectory is completed).

c d

“Pick the red cube and “Park in every parking “This a truck carrier truck” “Stack as many blocks as |
place it on the blue cube” spot in this lot” can before the tower falls”
(on blue_cube red_cube) (forall (?p - parking_spot (count (7t - truck) (count (?b - block)
in parking_lot) (on carrier_truck 7t) (in building 7b)
(park_in 7p)))
) (until

(falls_over building)
)

“Throw the ball into the bin”

- — (count (7b - ball) (then “Throw the ball so it bounces
Throw the ball so it hits a (7b) off the wall and into the bin”
block from the shelf onto QT by | opbe) (count (7b - ball) (then

the chair”

(count (7b - ball ?c - block)
(then
(7b)
(touch ?c 7b)
(lands_on chair ?c)

(7b)
(touch wall ?b)
(lands_in bin ?b)

))

“Place the bin on the bed and
the dog bed next to it, throw
dodgeballs to either of them”

(setup (?h - bin 7d - dog_bed)
(on bed 7h)
(next_to bed ?d)

))

“Throw the ball so it hits
the wall then bounces
back to you”

(count (?b - ball) (then
(?b)
(touch wall ?b)
(touch player ?b)

)

)
(count (7d - dodgeball) (then
(next_to player desk)

(7d)
(or (lands_in ?h ?7d)
(lands_on ?7d 7d))

Figure 1: Goals as Reward-Producing Programs. Panels a-d show different goals, presented in
natural language and mapped to pseudo-code in a program-like representation. Panel e shows a set
of varied yet related goals in our experiment environment, of which the blue and pink were created
by participants in our experiment. Each goal is represented by a throw trajectory (dashed line in
the illustration) matching a description of the goal (whose text is the same color as the line). We
highlight shared compositional components between programs in yellow, orange, and green. Our
program representations are reward-producing, that is, run on sequences of agent interactions with an
environment (state-action pairs) and emit a score with respect to the specified goal. Our pseudo-code
and domain-specific language both use a LISP-like syntax, where function calls have the function name
as the first token inside the parentheses. Participants in our experiment created some of these goals;
see [Figure SI-1| for representations of the blue and pink programs in our domain-specific language.

In this article, we demonstrate that programs can capture real human-created goals in
a specific domain and build a model capable of generating new programs representing
human-like goals. We devised a rich experimental environment for goal generation and
asked human participants to generate playful goals (games), which we translated into
programs in a domain-specific language. We also developed a Goal Program Generator
model (GPG) to generate new goals in this representation, learning a fitness metric over

programs to capture human likeness and sampling diverse goal programs to maximize
fitness. We found that the model succeeds in generating novel games distinct from examples
in the training dataset. Human raters evaluated several characteristics of model-generated
games, including how human-like they were. Model games from sections of program space
closer to participant-created games were judged indistinguishably from the real games, but
model samples further away were not rated as highly on average. Analyses revealed that
our learned fitness function predicts several human judgment questions, including how
human-like games are rated. These results demonstrate that our goal representations and
model capture important aspects of how people creatively construct new goals, generating
plausible, diverse goals and predicting understandability and fun ratings.

Behavioral results

Although goals play a crucial role in psychological theory, there are few, if any, empir-
ical paradigms for eliciting wide-ranging goals from study participants. We created an
experimental setting that aims to capture the rich, playful, and creative nature of how
children (and adults) create everyday goals. We used AI2-THOR [46] (an embodied, 3D
environment simulation) to set up a room resembling a child’s bedroom, filled with toys
and other common objects (Figure 2p, and see for a larger version). In our
task, we asked participants to propose a single-player game to be played in the room. This
design allowed participants to imagine and propose a wide range of playful goals, with the
aim of game generation helping to make the resulting goals more concrete. We collected a
dataset of 98 games, described by participants in natural language. In addition, we recorded
full state-action traces of each participant’s interactions with the environment, which we
leveraged in later experiments (see|Dataset collection methods|for additional details).

We then manually translated each game from natural language to programs in a domain-
specific language (DSL), inspired by language of thought models in computational cognitive
science [30, 33,68, 74, [89]. The DSL is used to model the semantics of games in our dataset,
independent of the exact natural language phrasing, and was initially derived from the
Planning Domain Definition Language (PDDL [32]]), which offers a basic representation for
specifying goals (i.e. end states of plans) and preferences (i.e. other costs to optimize while
planning). Each program in the DSL contains two mandatory sections: gameplay prefer-
ences describing how a game is played, and scoring rules specifying how to determine a
player’s score based on the satisfaction of the game’s preferences. Game programs may also
contain optional setup instructions and terminal conditions (see|[Supplementary informa

for the full DSL).

Our choice to represent games as programs allows us to quantitatively analyze their struc-
ture and fundamental components. We found that people recruit an intuitive physical
common sense when creating games (Figure 2b, and see|Game dataset analyses methods|for
details). For instance, if an object is thrown, it’s likely a ball, and if an object is stacked, it’s
likely a block — and while a few participants specified games involving throwing blocks,
none attempted to stack balls. Similarly, participants did not specify throwing cumbersome
objects (such as the laptop or chair), and a participant who specified throwing a large ‘beach
ball” clarified that it should land on the bin (as the ball does not fit within the bin). We
also observed evidence of both compositionality (common structure reuse) and creativity

(preponderance of unique structures), summarized in|Figure 2t (see(Game dataset analyses|

ethods|for details). Counting occurrences of grammatical structures while abstracting over
the identities of individual objects (i.e. treating ((block)) and ((
ball)) the same), we find the five most common structures cover almost half
of the total observations, offering strong evidence of reuse through compositionality. At
the other end of the distribution, we also observe a long tail emblematic of creativity, as
one-half of the unique structures we count appear exactly once. Despite not being explicitly
prompted to generate novel or creative games, many participants proposed entirely unique
gameplay ideas, encouraging us that our experimental paradigm elicits rich and creative
goal creation.

a Game Creation Experiment . agent
. N When answering the questions below,
please make sure to use the names of e - ny Obj ect
the objects in the game. -
Optional: please describe any setup in e balls
the room (from its initial state) required
for your game: B blocks
To prepare the room for the game, ... -
Il building
]) I furniture
Pl_ease describe a game you could play in
this room: Il large_objects
To play my game, ... -
[ramps
Please explain the scoring system for L receptades
yourgame: [room_features
To score my game, ... -
B small_objects

b Exclusively Throwing Games Other Games

150

0 v 0
& o ez N N X S I 2 T TS S N RS
S o\b <& N «© &2 o RS S o\b & T &L T dQ RS
2 S <2 3 < < L @ > < ¢ ©
SENP ORI <& &7 & < e’ &7
? & &7 2 S &7 ,b@ &
' ' [
c Predicate Predicate
70
) .
(preference throwBallToBin (preference dodgeballThrownToBinFromDesk
(exists (7d - dodgeball 7h - hexagonal_bin) (eripne (74~ dodgoball h - hexagonal.bin)
e N : - ‘then
60 - (then _w [10](once (and (adjacent desk agent) (agent_holds 7d)))
-v[3](once (agent_holds ?d)) L [1]¢hold (and (in_motion ?d) (mot (agent_holds ?d))))

“#[1](hold (and (not (agent_holds ?d)) (in_motion 7d))) [.-~ [2](once (and (not (in_motion 7d)) (in 7h 7d)))
=-»[2)(once (and (not (in_motion ?d)) (in 7h 7d))) I PR

50 -
-7 (3)(preference ballThrownFrom0f fRugToRug
(exists (7d - dodgeball_red)
o (then
P _v[26] (once (and (agent_holds 7d) (not (on rug agent))))
s Pt [1] (hold (and (in_motion ?7d) (not (agent_holds 7d))))

p _--#[7](once (and (not (in_motion 7d)) (on rug 7d)))

R)

Pl (4)(preference blockFromRugToDeskWithoutBreaking

- - (exists (?c - cube_block)

- (then

s _-» [39] (once (and (on rug agent) (agent_holds 7¢)))

- __-{-"7 = [100] (hold (and

=T o (on rug agent) (in_motion 7¢) (not (agent_holds 7c))
T - (not (exists (70 - (either lamp desktop laptop))

- . (or (broken 7o) (in_motion 70)))

40

304

20

Structure Occurrence Count

)
——---# [75] (once (and (on rug agent) (on desk 7c) (not (in_motion 7¢))))

»
0 20 40 60 80 100 120
Structure Index

Figure 2: Participants in our behavioral experiment create diverse games reflecting common sense
and compositionality. (a): Our online game creation experiment (see full interface in
(b): Participants showcase intuitive common sense. Left: In games involving exclusively throwing,
participants use balls (orange) far more often than any other object type. Right: In other games,
participants refer to blocks or “any object” more often, most often checking where objects are placed
(using the in and on predicates). We most often observe balls being thrown and blocks being stacked,
and while a few participants specified block-throwing games, no participant created a game involving
ball-stacking. Participants also rarely specified throwing large or cumbersome objects (such as the chair
or laptop), and only used buildings to specify stacking objectives (as opposed to moving or throwing
them). (c): We analyze the occurrence of various abstract structures in our programs (see

Game datase

[analyses methods|for details). Red: The five most common structures cover almost half (47.5%) o
total occurrences, showing extensive compositional reuse. The three most common structures combine
into simple ball-to-bin throwing preference ((1), structure indices in square brackets). Purple: Other
structures are reused fewer times, covering most remaining occurrences (another 40.5%). These rarer
structures allow for creating more complex throwing elements, constraining where the player throws
the ball from (2,3) or to (3). Blue: Exactly half of the structures (63 / 126) appear only once — this long
tail of expressions offers evidence of creativity. The last throwing preference (4), specifying throwing a
block from the rug onto the desk without moving off the rug or breaking any of the objects on the
desk, uses two unique structures.

Modelling Results

We next develop a computational model to synthesize human-like goals. Guided by insights
from our behavioral analyses, we design our model to explicitly leverage cognitive capacities
(i.e. common sense and compositionality) that people seem to recruit in creating goals.
Our Goal Program Generator model (GPG, illustrated in operates over a high-
dimensional program space and learns how to generate goals maximizing a fitness measure.
Upon entering a new environment, people can create goals without extensive data-driven
demonstrations; therefore we aim for a model that can similarly generate goals without a
large number of examples.

Central to the GPG model is a fitness function f(g) = 6 - ¢(g) that maps f : G - R
from a game ¢ € G to a real-valued score that aims to encode its human-likeness. We
transform each game into an 89-dimensional vector of features that capture properties
relating to structure (e.g., the size and depth of its syntax tree) or logic (e.g., whether any
expressions are redundant). Other features proxy cognitive capacities, such as physical
common sense (estimating predicate feasibility from play data) or compositionality (n-gram
model over syntax elements). We leverage our programmatic representation of goals in
order to automate this feature extraction process (see|Fitness function methods|for details).

Our framework is most committed to goals-as-programs that can be scored via a learned
fitness function; it is less committed, at present, to the specific algorithms for parameter
learning and program search [58]]. In this implementation, parameter learning of feature
weights 6 proceeds in a contrastive fashion [16} 48] by optimizing for the difference in scores
between our set of human-generated games and a substantially larger set of corrupted
(i.e. lower quality) games obtained through random tree-regrowth [33] on our dataset (see
and details in [Fitness function methods). This learned fitness function then
guides an evolutionary search procedure in order to generate novel games. Broadly inspired
by work in genetic programming, we use a quality-diversity algorithm [69, [14] called MAP-
Elites [62] to generate a set of samples that widely cover the space of programs in addition
to optimizing the fitness function (see). The details of our implementation,
including the particular criteria used for maintaining sample diversity, are available in

MAP-Elites methods|

Generated games

The GPG model produces a variety of outputs that range from variants of simple games in
our reference dataset to games in entirely new regions of program space. In we
present examples of matched games generated by our model that “match” a game in our
real human dataset (provided for reference) by occupying the same niche defined by the
MAP-Elites algorithm. In the first pair left), the model proposes an original block-
stacking objective: where the human participant created a tower, the model asks to stack
three blocks all on the same taller block. The second and third pairs middle and
right) demonstrate the model’s ability to propose throwing games. In both cases, the model
proposes interesting detailed objectives, some unseen in our training set (e.g., throwing
balls onto the top shelf or desk), that match the niche of the participant games by having
the same high-level configuration. However, minor elements in generated games tend
to be less readily explainable (e.g. the scoring condition in the left-most generated game,
which arbitrarily multiplies the number of satisfactions by 0.4). Our model also produces
unmatched games that occupy niches without corresponding human games . These
include whimsical combinations of throwing and block-stacking left), a game that
combines ball throwing and small object placement middle), and a game that
offers a collection of varied block-stacking objectives (all-on-one, a T-shape, and a tower;
Figure 5} right). Though these programs represent creative goals, with preferences that are
each individually sensible, at times they struggle to combine into a coherent whole (e.g.,
the golf ball throwing and block placement elements in[Figure 5| left, which do not readily
describe an easily explainable game).

More quantitatively, [Figure ED-3| shows that the GPG model quickly produces games

with fitness scores in the range of human samples and does so across many of the niches

“Throw the ball so it
hits the wall then
bounces back to you”

(count (7b - ball) (then
(thrown ?b)
(touch wall ?b)
(touch player ?b)

))

on the top shelf”

(thrown 7d)
(lands_on top_shelf 7d)

(end (>= game_time 30s))

“You have 30 seconds to
throw dodgeballs to land

(count (7d - dodgeball) (then

the north wall, and make
stacks of a cube, a yellow
cube, and another cube.”

(setup (all (7c - blue_cube_block)
(on rug 7c)

bl

(count (70 - any_object)
(near north_wall 70)

)

(count (block_stack)
(cube_block)
(yellow_cube_block)
(cube_block)

)

“Place all blue cube blocks
on the rug. Put objects near

“Put the desk in a chair.
Stack blocks on the bed”

(setup (7c - chair)
(in 7c desk)

)

(count (?b - block)
(on bed ?b)

)

Figure 3: Goal Program Generator model overview. Our model operates

“Place the bin near the rug
and throw balls into it”

(setup (7h - bin)
(near rug 7h)

)

(count (7d - dodgeball) (then
(thrown ?d)
(lands_in 7h 7d)

)

Fitness »

“Place the bin on the bed
and the dog bed next to
it, throw dodgeballs to
either of them”
(setup (?h - bin ?d - dog_bed)
(on bed 7h)
(next_to bed 7d)

)
(count (7d - dodgeball) (then
(next_to player desk)

(thrown ?d)
(or (lands_in 7h ?d)
(lands_on 7d ?d))
)

“Place the bin near the
rug. Throw basketballs
onto it, and put chairs
on the desk”

(setup (7h - bin)
(near rug 7h)

)

(count (7b - basketball) (then
(thrown 7b)
(lands_on ?h 7b)

)

(count (?c - chair)
(on desk 7c

)

Malformed program:

One variable (?b) unused,
predicate applied to the
same variable twice.

(count (?b - ball,
?7c - chair)
(on ?c ?c)

on programs in some

high-dimensional space (visualized in two dimensions). We learn a fitness metric (Z-axis) captur-
ing desirable aspects of programs, using a dataset of human-created goals (highlighted in green).
Our model then generates diverse new samples maximizing the fitness measure, some “matching
participant-created goal programs on diversity criteria (in blue) and other “unmatched” novel goals
(in purple). These programs stand in contrast to potential failure modes, such as generating programs
that are malformed or semantically incoherent (in red). All (non-red) goals in this figure were created
by participants in our experiment or by our model; see [Figure SI-T| for their full representations in our
domain-specific language.

defined by our behavioral characteristics. Considering only games that pass a plausibility
characteristic we include in our MAP-Elites search (see [MAP-Elites methods|for details),
1889 games (94.45%) exceed the fitness score of the least fit real game, and exactly 1000
games exceed the fitness of the median human game. To the extent that our fitness function
captures human likeness, our model produces human-like games; we next use human
evaluators to extrinsically test our model.

Human evaluations

To systematically and extrinsically evaluate our model, we performed human evaluations
using a second set of human participants (n = 100; see for the evaluation
interface and [Human evaluation methods|for details). Evaluated games belonged to one
of three different categories mentioned above: real participant-created games from our
behavioral experiment, or matched or unmatched model-generated games (games in[Figure 4|
and [Figure 5| were included; see [Human evaluation methods| for details). Participants
evaluated three games in each category above (without knowing their categories) in a
randomized order and provided Likert scale ratings on each game for seven measures,
including human likeness, fun, and creativity. Our final dataset includes 892 participant-
game evaluations, each consisting of a rating for all seven measures.

Table 1: Human evaluation result summary

Mean score by category Significance of difference

Measure Real (R) Matched (M) Unmatched (U) RvsM RvsU Mvs U
Understandable T 3.943 3.923 3.331 - **x **x
Fun to play 1 2.522 2.430 2.068 - o ok
Fun to watch 1 2.385 2.313 2.024 - o **
Helpful* 1 2.997 2.987 2.840 - - -
Difficult * 2.582 2.660 2.676 - - -
Creative T 2.318 2213 2.143 - * -
Human-like 1 2.813 2.670 2.119 - o o

Evaluators don’t distinguish between participant-created real and matched model games,
but do distinguish unmatched games from both. Participants responded to seven Likert
questions on a 5-point scale, one for each attribute in the first column (see[Human evaluation|

). We report the nonparametric Mann-Whitney U test [57] for differences in out-
Table SI-2|for test statistics and P-values. *: P < 0.05, **: P < 0.01,

comes. See Supplementary
***. P < 0.001.

t: The full measure description is “Helpful for interacting with the simulated environment.”
In most measures, higher scores are better, indicated by the 1, other than Difficult *, in which

3 means “appropriately difficult”, and scores below and above indicate too easy and too
hard respectively.

summarizes the quantitative responses from our human evaluations. We begin
with a simple statistical comparison of the ratings of the games in the different categories
using the nonparametric Mann-Whitney U-test [57] (and see[Human evaluation methods|for
additional details). Participants respond similarly to the real and matched games, with no
statistically significant differences in the average response scores across all seven attributes.
On the other hand, the unmatched games differ on a number of attributes. Compared to
both real and matched games, participants judge them to be less easily understood, less
fun to play and watch, and less human-like. One potential explanation for the apparent
similarity between matched and real games is that the former simply replicate the latter
in form and function. We examined this question and found that matched and real games
have substantial functional differences (see summary in [Figure ED-5, details in [Supple]
mentary information G.4, and methodological details in [Sample similarity comparison

methods).

To further analyze these differences and the extent to which they are mediated by our fitness

measure, we performed a mixed-effects regression analysis whose results are summarized
in [Table ED-1 We fit independent models using each of the seven attributes we asked

Participant Game #14 (36.491)

Participant Game #31 (37.338)

Participant Game #40 (36.152)

Gameplay: stack a flat block on a bridge
block, then place a tall cylindrical block on
the flat block, followed by a cube block on the
tall cylindrical block, and finally a pyramid
block on the cube block

Scoring: you get 10 points for each different
set of blocks you have successfully stacked
in this order by the end of the game

Gameplay: throw a ball so that it touches a
wall and then either catch it or touch it

Scoring: you get 1 point for each time you
successfully throw the ball, it touches a wall,
and you are either holding it again or
touching it after its flight

Setup: Place a green golf ball near the door
and ensure it remains there for the entire
game. During the game, place at least one
dodgeball near the green golf ball.

Gameplay: While standing next to the green
golf ball and the door, throw dodgeballs with
the goal of getting them to stop inside a
hexagonal bin

Terminal: The game ends when you have
thrown the same dodgeball and it has
stopped moving more than once, or when
you have thrown and stopped at least three
different objects

Scoring: You earn 10 points for each
different object that you successfully throw
into the hexagonal bin

(define (game 613e4bf960ca68f8de00e5e7-17) (:domain (define (game 614fbi5adc48d39ffcaddd1-39) (:domain ¢ Caonasn)
medium) many) (76 - gortbat_groe)
d (aear door 1)
o castleBuilt ¢ ballThrownToWallToAgent P ——
(7b - bridge_block 7f - flat_block 7t - (?b - ball 7w - wall) gasa-cpsional
tall_cylindrical_block 7c - cube_block 7p - aeaniig o)
pyramid_block) 7b)) y?
((and (not (holds 7b)) (5
b)) (touch 7w 7b)) y
:) (agent 7b))) e
M) e (74~ gt
(:scoring <r, aotgebatiTzouToBia
(count ballThrownToWallToAgent) - hexagonal bin 7g - golfball_green)
b)) (a2a 76 agont) (aijacent door agens) (sgs
(:sc0 2 Gana ¢) G)
. o (ana (zor Cin_moion 7)) (in 78 7003
(* 10 (count-once-per-objects castleBuilt))
D))
>
(preserence shrovktteaptPrandoor
cists (g - goltoat_groem)
G
Conce (ant ¢ 78 sgent) door sgent)
)
(hota (ana ¢) Gt o
Conce (ot ¢ o
>
)
>
>
>
sastotzs (count n
hiscts throskutesptFromboor) 9
per-obsects dodgebaliThrousToBia))
Matched Model Sample (36.994) | | Matched Model sample (37.324) Matched Model Sample (37.020)

Gameplay: stack three blocks on top of a tall
rectangular block, with two of the stacked
blocks being the same type as the tall
rectangular block

Scoring: your score is 1.4 times the number
of such stacks you have at the end of the
game

Gameplay: throw dodgeballs so that they
land and come to rest on the top shelf

Terminal: the game ends after 30 seconds
Scoring: you get 1 point for each dodgeball

that is resting on the top shelf at the end of
the game

Setup: Place a hexagonal bin near the rug
and ensure it remains there for the entire
game

Gameplay: Throw dodgeballs aiming to land
them on the desk or inside the hexagonal bin

Scoring: You earn points for each dodgeball
that comes to rest either on the desk or
inside the hexagonal bin. Your final score is
the sum of these points

same evo-8176-22-0) (:domain many)

1ce preferenced
7v0 - block ?vi - block 7v2 -
tall_rectangular_block 7v3 - block)

(on ?v2 7v0)
(on 7v2 7v1)
(on 7v2 7v3)
(7v0 7v2)
(e 7vi 7v2)
0)))))
(:scoring

(+ (* 0.4 (count preference0))
(count preferenced

D))

:c preference0
(7v0 - dodgeball)

is 7v0))
s 7v0)) (

v0)) (

coring

(count preference0)

#70-B178-6-0) (:clomsin medius-objocts-room-vl)

bexagonal_bin)

preterenced
(240 - dodgoball)

o) ¢ 700)))
750)) (o desk 7402

preterencel
(740 - hoxagonal_bin v

1 - dodgeball)

«) ¢)
¢ D) (in 790 DY)

(+ (count. preference) (coun. preferenced))

or details.

Figure 4: Goal Program Generator model produces simple, coherent, human-like games. Each
pair of games in a column has the same set of MAP-Elites behavioral characteristics. Parentheses:
the fitness score assigned by the model to each game. Natural language descriptions are generated

through automated back-translation from programs (see[Supplementary information E|for details). To

8

ascertain that the model-generated programs are distinct from training set examples, we also provide in

the most similar real exemplar using an edit distance, and see[Supplementary information F

Setup: place a hexagonal bin near the north
wall and make sure it stays there throughout
the game

Gameplay: throw golfballs aiming to have
them stop on and inside the hexagonal bin,
and stack blocks so that each has three cube
blocks on top, with one cube block being the
same type as the block it's on

Scoring: you score points based on the
number of correctly stacked blocks minus
four times the number of golfballs that stop
on and inside the hexagonal bin

Gameplay: throw dodgeballs and place
credit cards or CDs into a hexagonal bin

Scoring: you get 40 points for each
dodgeball that ends up in the hexagonal bin
multiplied by the number of credit cards or
CDs in the bin, plus 1 point for each
dodgeball thrown regardless of where it
lands.

Gameplay: Stack blocks in specific
configurations

Scoring: You get 1 point for each stack
where one cube block is on top of another
cube block with a tall rectangular block on the
same cube block. You also get 1 point for
each stack where a cube block is on top of a
tall rectangular block, which is on top of
another cube block, with an additional cube
block on top of the tall rectangular block,
provided the bottom cube block is the same
type as the tall rectangular block.
Additionally, you get 1 point for each stack
where a tall rectangular block is on top of a
cube block, which is on top of another cube
block, and the top cube block is the same
type as a third cube block. Your final score is
the sum of points from these three
configurations

(define (game evo-8172-48-1) (:domain many)
(:setup
(7v0 - hexagonal_bin)

served
(near north_wall 7v0)

M)
(:constraints
(and
(preference preferenced
ts (7v0 - hexagonal_bin 7vi - golfball)

(then
(once (agent_holds ?7v1))
(hold (and (not (agent_holds ?v1)) (in_motion
7v1)))

(once (and (on ?v0 ?v1) (not (in_motion ?v1))
(in 7v0 7v1)))
M)
(preference preferencel
(exists (7v0 - cube_block 7v2 - cube_block 7v3 -
block 7v4 - cube_block)
(at-end
(and
(on 7v3 ?v0)
(on 7v3 7v2)
(on 7v3 7v4)
(same_type ?7v4 7v3)
DN
(:scoring
(+ (* -4 (count preference0))
(count preferencel)

M)

ne avo-8189-236-1) (:domain

zany-objacta-roon-v1)

co proforenced
(740 - hexagonal bin 7vi - dodgoball)
1)

1)) G on 7v1))
(a_sotion 7v1)) (1n 790 7v1))

© preferencel
(741 - dodgebar)

s Tv1))
© ¢

ds 1)) (o on 7v1)))
”

© protorence2
(742 - (oithor credit_card cd) 798 - hoxagonal bin)

n 7v3 7v2)

(+ G 40 (count proferenced) (count preference2))
(count proferencet)

s many-objocts-room-v)

exence2
cube_block 7v1 = cubs_block 792 - tall_rectangular_block 7v3
0

+ (1 (count profarence1) (count preferanced))
(count proference2)

Figure 5: Goal Program Generator model produces interesting, novel goals. Each of the three games
below has high fitness and fills a cell in the MAP-Elites archive with no corresponding human game
in our dataset. Parentheses: the fitness score assigned by the model to each game.

our human evaluators to judge as the dependent variables. We include fixed effects for
the fitness score and membership in the real and matched groups (treating the unmatched
group as a baseline), and random effects for the Earticiﬁants and individual games (see

[Human evaluation methods|and Supplementary Table SI-3|for full details). We find that our
fitness function captures many of the evaluated attributes: higher fitness predicts higher
ratings of understandability, fun to play, and human likeness (B¢ > 0); conversely, higher
fitness also predicts lower ratings of helpfulness, difficulty, and creativity (85 < 0). Our
positive findings are promising: they indicate that our fitness function, learned to maximize
human likeness in a symbolic program space, also captures intuitive human notions of
understandability and fun. Conversely, we view the negative relations as evidence of
some degree of mode-seeking: our fitness measure likely assigns the highest scores to the
games most representative of the dataset at large. These modal games are plausibly neither
particularly creative nor difficult, which means that participants might find also them less
helpful for learning the details of the environment. Finally, differences in attribute ratings
persist between groups even accounting for any mediating effects of fitness scores (see
[Supplementary information G.2|for details)

We also performed ablations of key model components corresponding to the cognitive
capacities we found our participants recruited. To ablate physical common sense, we remove
from our fitness function the two features that estimate the feasibility of a game’s preferences
by leveraging our database of participant-environment interactions. Analogously, we ablate
the intuitive coherence we observe in human goals by removing the features that capture the
coordination of gameplay elements between different sections. Ablating compositionality
is more difficult, as our programmatic representation is inherently compositional. We do
so by removing the crossover mutation operator used to generate new samples during
MAP-Elites, which most explicitly leverages the compositional structure of games. In all
cases, model performance degrades substantially, either in sample fitness scores or in goal
plausibility as estimated using our database of participant-environment interactions (see
[Supplementary information H|for further details).

Discussion

Goals are a critical aspect of human cognition and, in fact, the starting place for many models
of human behavior. However, the representation of goals is often impoverished. In this
article, we proposed a new framework for understanding human goals as reward-producing
programs, and thus understanding goal generation as program generation. To evaluate
this framework, we developed an interactive experiment in which participants created
playful goals, operationalized as games to be played in a virtual environment. By analyzing
the program-based translation of these games, we highlighted several cognitive capacities
recruited by our participants, such as physical common sense and compositionality. These
capacities, in turn, informed our modeling efforts. We then built a computational model that
learns from a small dataset of games and generates goals that are both novel and human-like
according to human evaluators.

This work unites various strands of research in cognitive science, artificial intelligence,
and game design. First, we build on a substantial literature studying the psychology of
goals [25] 6} 27,160, [19]. We emphasize open-ended goal creation given that generating new
exemplars is a core capacity of human conceptual representations [88]] and the utility of
games in the study of cognition [2]. Our work also relates to goal-conditioned reinforcement
learning [55], and we aim to improve on the goal representations used for such agents that
tend to lack the variety and richness of human-created goals [21} ch. 7]. Our goal program
interpreter conceptually draws on the notion of reward machines introduced in [42]. Finally,
we are inspired by the automatic game design literature, such as synthesizing board game
variants [66] [38] [12] or simple video games [83) 75, 91} 45]. Unlike our approach, these
efforts often optimize program synthesis for some heuristic notion of fun [12} 83] rather
than explicitly modeling human-like game generation.

In instantiating our model, we necessarily make a number of specific implementational
and algorithmic decisions. Our framework is committed to the representation of goals as

10

reward-producing programs: computationally executable mappings from agent behavior to
indications of progress towards a goal. We find it crucial that these programs capture the
rich, temporally extended nature of goals people create, and that they facilitate the flexible
and compositional creation that people seem to engage in [47, [88]. Our model operates
over these programs and assumes two primary components: a measure of human likeness
and a method to sample novel programs. The model we instantiate operates at Marr’s
[58] computational level; it tackles the what of goal generation without directly inspecting
how people do so. We are excited for future work to seek algorithmic-level signatures and
constraints on how children and adults flexibly generate rich goals and leverage them to
build models that operate closer to Marr’s algorithmic level. Particularly, understanding
whether specific primitives in our DSL map onto cognitive primitives will require further
work.

Our model strongly relies on its approach to sample diversity, which arises from the choice
of “behavioral characteristics” that define the axes along which the MAP-Elites algorithm
maintains diversity. In this work, we select behavioral characteristics based on notable
gameplay components observed in our human dataset; future work could explore other
techniques for maintaining diversity, including the automated selection of behavioral char-
acteristics [22}36]. Our current features approximating intuitive physical common sense are
indirect, using participant interactions with the environment to estimate feasibility. Future
approaches could integrate planning or physical simulation to improve our model’s under-
standing of physics [84}[15]. Finally, our model is inherently coupled to the environment
and dataset we collected — particularly given the engineering effort to instantiate various
types of knowledge. This approach has some distinct advantages: we can isolate various
cognitive capacities, interpret their contribution to our fitness measure (Supplementary in{
, and ablate their roles (Supplementary information H). Simultaneously, some
of the challenges our model faces (such as coherence between program components) might
be alleviated by incorporating natural language or by leveraging the capabilities of large
language models to write code and adapt to in-context instructions. Language models
could also alleviate our current reliance on manual (and potentially arbitrary) translations
from participant game descriptions to the proposed mental language of goal programs (see
[89] for a discussion on using language to construct meaning through programs, and [79]
building programs to act as world models).

We see two particularly promising ways in which our representational framework could
be used going forward. First, there is increasing interest in building artificial agents that
can flexibly explore and generalize across environments [72}131]. The autotelic perspective
argues that empowering agents to propose and pursue self-generated goals is a fruitful way
to improve their ability to generalization [21]. However, goals in such systems are often
derived from agent or object positions [29}[80], short natural language descriptions [24} [87],
or limited temporally-aware mechanisms [54}, 51] — all impoverished when compared with
the diverse goals humans flexibly create. We are excited for future work to empower artificial
agents with richer goals that reflect human-like novelty and difficulty, for two specific
reasons. First, we believe access to complex and varied goals would enable agents to learn
flexible representations of their environments that support higher behavioral adaptability
[19]. Second, we view compositional goal production as facilitating effective exploration
of unseen goals [20] (and see [90] for a discussion of generalization and exploration). We
also note our current approach estimates goal fitness without considering additional higher-
level objectives that might guide goal generation. Prior literature offers curiosity [82} 9],
empowerment [34} (1, 23], information gain [73} 53], novelty [78, 9], and learning progress
[81) 8] as compelling potential objectives. Future work could instantiate goal generators
that consider these objectives as auxiliary terms to the fitness function and compare the
behaviors that arise in artificial agents through pursuing them.

If we are to understand goals as programs, our proposed framework may also help ad-
vance our understanding of intuitive psychology and goal inference [76), 44} 56]]. Previous
work proposed that our ability to understand other people’s goals, as part of our Theory
of Mind, operates through inverse reinforcement learning: inferring an agent’s reward
from observing their behavior [43]. Many prior approaches eschew goals entirely, using
some function approximator (e.g., a neural network) to estimate reward, resulting in an

11

uninterpretable estimator that can struggle to generalize [5]. We envision leveraging our
goal programs as a prior distribution for a Bayesian Theory of Mind [7] approach, scaling
up previous approaches that relied on a small number of predefined goals [86]], to create
models that would parse an agent’s behavior and provide an interpretable, semantically
explicit estimate of their goal [37]. Applying our framework to either of these proposed
problems would offer a substantial long-term challenge building on the work we present in
this article. Nevertheless, we see an exciting prospect to leverage this approach to improve
the understanding of human goals and endow machines with human-like goal concepts
and capabilities.

12

Methods

Dataset collection methods

Experimental design: After a consent form and instructions quiz, participants completed
a tutorial designed to familiarize them with the controls for our environment. After suc-
cessfully completing the tutorial, they were placed in one of three variations of the main
experiment room, with the same structure but different amounts of available toys and
objects. Participants were then free to explore this new room until they had a game ready,
and could freely reset it to its initial state in the meantime. Participants were asked to
create games with the following restrictions: single-player, require no additional space or
objects that they do not see in the room, and include a scoring system. While the latter
constraint may seem limiting, we note that any arbitrary goal can be scored by rewarding
the achievement of the goal.

Dataset collection: Participants then reported their game in natural language in three text
_

boxes, one of which was optional (see[Figure ED-1)). The optional first one allowed specifying
whether there was any setup or preparation required to get the room from its default initial
state to one that would allow playing the game (e.g., placing the bin on the bed). The second
text box allowed participants to describe the game’s gameplay, and the third offered space
to describe the scoring rules. To encourage participants to imagine playing their game,
they were also asked to report their perceived difficulty level and how many points they
thought they might score if they played it. Participants then had a chance to play their
game and revise it should they want to; if participants opted to revise their games, we
analyzed the revised ones. We contacted 192 participants via Prolific [65] of whom 114
finished the experiment and another 12 were paid due to technical difficulties. Participants
were paid a base rate of $10 and received a $2 bonus if their game satisfied the required
constraints. Successful participants took 44.4 minutes on average, with a standard deviation
of 23.3 minutes. We then excluded 8 games that did not satisfy the constraints we posed on
participants, 6 duplicates (including some due to technical difficulties from participants who
restarted the experiment), and 6 other games that were unclear or under-specified. After
accounting for two other games we opted to avoid modeling due to their complexity (one
referring directly to the game interface, and control, and another describing several games
or levels in the single description we collected) , we arrived at our final dataset of 98 games.
We acknowledge the potential arbitrariness of manually translating from natural language
to our program representations; we attempted to be maximally faithful to the descriptions
and excluded participants whose games required too much subjectivity or interpretation.

Interaction traces: In addition to the game descriptions in natural language, we record
traces of participants’ interactions with the environment. We record state-action traces to
allow us to replay and examine how participants interact with our environment. We record
separate traces for each different segment of the experiment (before creating the game; while
reporting their game; playing their game; after editing their game), and for each time the
participant resets the environment within each segment. We end up with 382 total such
traces. Our primary use for them is in implementing a “reward machine,” an interpreter for
our goal programs, which parses a goal program into a state machine, and iterates through
a trace to emit the score of that trace under the goal. We use a limited version of this in
our fitness features (see [Fitness function methods|for additional details) and in some of our
model evaluations and ablations (see [Supplementary information H|for additional details).

Game dataset analyses methods

Common sense through predicate role-filler analysis: We analyze predicate role-filler
occurrences, coarsening individual objects to higher-level categories (see the legend on the
right of [Figure 2p). To split between the two panels of [Figure 2b, we categorize each game
by whether it includes the following motifs: throwing (e.g., balls into a bin), stacking (e.g.,
blocks in a building), organizing (e.g., placing objects in specified places), or other. We split
the figure into games involving only throwing motifs (left panel) and games involving any
other motifs, potentially in addition to throwing (right panel). In games involving only
throwing (left panel), participants most often refer to balls, primarily checking whether or

13

not the agent holds a ball or a ball is in motion (as part of quantifying the act of throwing).
Other predicates are often used to specify some additional conditions on throwing (such as
specifying the bin being on the bed or the agent being next to the desk) and are used with a
variety of object categories. Conversely, in games involving other elements (right panel),
we see blocks and the generic “any_object” being used far more often, mostly in various
placement and stacking constraints.

Compositionality and creativity through abstract structure occurrence: We analyze how
often participant games make use of various grammatical structures to showcase both
compositional reuse and long-tail creativity. Each structure involves a temporal modal (such

as or) and the predicate expression nested under it, such as ((
?b)), where ?b is a variable quantified earlier. We count structures, abstracting away
specific variables and their types — so the expression above would be coarsened as ((

<obj>)), and would be counted together with any other expression coarsened
to this pattern. We encounter a total of 126 unique expressions in our dataset, the most com-
mon one with 62 occurrences being ((((<obj>))(<
obj>))), which maps loosely to “find a sequence of states where an object is not held and
is in motion” — that is, is currently moving with the agent touching it, for instance while
being thrown or rolled. Of the 126 expressions, exactly half (63) occur only once.

Fitness function methods

Fitness function form: The fitness function used by our model is a learned, weighted
linear combination of a set of features extracted programmatically from each game that
is optimized to assign high scores to “human-like” games and low scores to everything
else. It is a function f : G — R that maps individual games g € G to real-valued scores:

f(g) = 6-¢(g), where 6 is a learned vector of weights and ¢ : G — [0,1]F is a feature
extractor.

Feature extractor and feature set: The feature extractor ¢ represents each game as an
89-dimensional vector (i.e. F = 89). Each entry in the vector corresponds to a particular
structural or semantic property of the game, from the size and depth of the syntax tree to
the apparent feasibility of the game’s preferences. We normalize the values of each property
to fall within the unit interval by using the observed range of values in our dataset. Many
features used in the fitness function are directly computable from the DSL representation of
a game (for instance, properties of its syntax tree or the misuse of particular grammatical
structures). While these features represent the majority of the 89 features used, we also
implement two important sets of features that require additional computation.

The first of these are n-gram features that capture the mean log score of the game under a
simple n-gram language model trained over the set of human-generated syntax trees. We
fit n-gram models using stupid backoff [10] and a discount factor of 0.4 We compute these
scores separately for each game section (i.e. setup, preferences, terminal, and scoring) and
also for the game overall, resulting in 5 features.

The second set consists of two features that make use of an interpreter that parses game
programs into “reward machines” [41]: finite-state machines that process a trace of player
inputs and emit a reward whenever the particular scoring conditions of the game are met.
The interpreter programmatically implements each of the predicates in the DSL, which
allows us to construct a dataset of which objects were used to satisfy which predicates across
our dataset of 382 human play traces. The two features query this database in order to get an
approximate common sense measure of a game’s “feasibility,” computing the proportion of
a game’s predicate-argument combinations that have been satisfied by human players in
our dataset (one feature does this for individual predicates, while the other does this for
boolean logical expressions over predicates). While these feasibility measures give a sense of
whether the objectives of a game can be completed in the physical reality of the simulation,
the limited nature of our play trace dataset means they are far from perfect proxies.

The complete set of features used (and accompanying descriptions) is available in
[plementary information B} with the most important features (by their learned weights)
highlighted in[Supplementary information B.1

14

Fitness function learning algorithm: To learn the weight vector 6, we take inspiration from
the contrastive learning of energy-based models [16] with the objective of separating a set of
positive examples (our set of human-generated games) from a set of negative examples (and
see a summary in). To learn an effective fitness function, these negatives must
be qualitatively worse than our set of human games without being trivially distinguishable
from them. We generate a set of plausible negatives by corrupting games from our positive
set. To corrupt a game, we select a random node in its syntax tree, delete the node and its
children, and randomly re-sample a sub-tree according to the DSL grammar (illustrated in
red in [Figure ED-2g). This “tree-regrowth” approach [33] generally produces sub-trees that
are syntactically valid but semantically “out-of-place,” with the severity of the corruption
tending to correspond to the height of the re-sampled node in the syntax tree. To account
for the variance in the difficulty of distinguishing between a given positive and negative
example, we generate a large set of negatives: 1024 for each of the 98 positives, for a total of
100,352 negatives.

We train the fitness function (i.e. optimize 0) using a softmax loss, not unlike the MEE loss
used to train energy-based models [49] or the InfoNCE loss [85]. For a positive example g™
and a set of negative examples {g, }, k € {1,2,---,K}, we assign the loss:

exp(fo(g™))
exp(fo(g™)) + Tk, exp(fa(gy)

This loss encourages the model to assign higher fitness scores to the real games than the
negative examples. Simultaneously, this loss provides a diminishing incentive to push
negative fitness scores down as the distance between the positives and negatives increases,
intuitively assigning higher loss to negative examples with fitness closer to the positive
example’s fitness. See|Supplementary information C|for full details of our training and
cross-validation setups.

L(g", {8 }1:6) = —log)

MAP-Elites methods

MAP-Elites overview: MAP-Elites is a population-based, evolutionary algorithm that
works by defining a set of behavioral characteristics: discrete-valued functions over genotypes
(in our case, game programs in the DSL) that form the axes of a multi-dimensional archive of
cells (and see an overview in|Figure ED-2b). At each step, a game g is selected uniformly
from among the individuals in the archive (Figure ED-2p, step 1) and mutated to form a new
game g’ , step 2) . The mutated g’ is evaluated both under the fitness function
f and each of the n behavioral characteristics b; : G — {0,...,k;} in order to determine
which cell ¢ = [b1(g),...,bn(g)] it occupies. If the cell is unoccupied, then ¢’ enters the
archive. Otherwise, it enters the archive (and replaces the previous occupant) only if its
fitness is greater than the current occupant of the cell , step 3) . In this way, the
algorithm maintains an “elite” for each possible combination of values under the behavioral
characteristics.

Behavioral characteristics: Inspired by prior work on using MAP-Elites for procedural
content generation [13], we define a set of integer-valued behavioral characteristics that
each indicate how many preferences in each archive game match one of nine archetypal
exemplar gameplay preferences (illustrated as the axes of the grid in). These
include several types of ball-throwing preferences, as well as ones capturing block-stacking,
object-sorting, and other miscellaneous activities. We also include two other features, one
capturing whether or not the game includes a setup component, and one capturing the total
number of preferences. For additional details and descriptions of the exemplar preferences,
see[Supplementary information D} The 11 total behavioral characteristics result in a total
archive size of 2000 games.

Plausibility behavioral characteristic: We include a “pseudo behavioral characteristic” that
explicitly captures a few general coherence properties of games. This characteristic captures
a conjunction of feature values where we expect either all plausibly human-generated games
to either exhibit or none of them to exhibit. We use this behavioral characteristic as a sort of

15

first-stage filter: if a game fails to meet these criteria, then it cannot reasonably be said to
be “human-quality,” regardless of its fitness evaluation. For all reported games, we ensure
that all of these criteria are satisfied. There are a total of 21 features used in this behavioral
characteristic, and though it doubles the size of the MAP-Elites archive (from 2000 games to
4000 games), we never evaluate any game from the half of the archive in which this feature
is false. See|Supplementary information D|for additional details.

Mutation operators: To mutate a game, we randomly select an operator from among the
following: regrowing a random node and its children in its syntax tree, inserting & deleting
the child of a node with multiple potential children, crossing over with the syntax tree of
another randomly-selected game, resampling the variables, initial conditions, or final
conditions used by a preference, and resampling the optional game sections (i.e. setup
and terminal conditions). We seed the initial archive by naively sampling candidates from
the PCFG—not with real, human-participant-created games or corruptions thereof that
were used to train the fitness function. Further details of the algorithm are available in
[Supplementary information D}

Human evaluation methods

Evaluation dataset: we select games to be evaluated using the following procedure:

1. real: We include 30 participant-created games, each with a different set of behavioral
characteristics — that is, each being considered “different” according to how our model
searches through the space of games (see[MAP-Elites methods) for additional details).

2. matched: For each of the real games included above, we include the model-generated
game from our final model from the corresponding MAP-Elites archive cell. Each of these
games includes the same number of gameplay preferences as the corresponding real
participant-created games, matching the same exemplar preferences.

3. unmatched: We then sample 30 additional games from our model’s archive. We sample in
a fashion that aims to be balanced across the different preference counts and usage of the
different exemplar preferences. That said, given that human games cover only 47 out of the
2000 archive cells, that leaves 1953 potential unmatched games to sample; it is difficult to
know how representative our set of 30 (which is about 1.5%) is.

GPT-4-based back-translation: Rather than ask participants to interpret our domain-specific
language, we use the GPT-4 [63] language model to perform a multi-step back-translation
from programs in our domain-specific language to structured natural language. For fairness
and consistency, we use this procedure on the real games in addition to the model-generated
matched and unmatched games. We first apply a rule-based system to apply templates,
translating expressions in the DSL to natural language sentence fragments. We then use
GPT-4 to first map the templated fragments to a more natural language, and then to combine
the description of each game component (setup, gameplay preferences, terminal conditions,
and scoring rules) to a short coherent description. See [Supplementary information E|for full
details and prompts used.

Human evaluations structure: [Figure ED-4| presents our human evaluation interface. Fol-

lowing instructions and an understanding quiz, participants evaluated nine total games:
3 real ones, the corresponding 3 matched ones, and 3 unmatched ones. Participants were
presented one game at a time and provided two short textual responses, one explaining
the game in their own words, and one providing a short overall impression of the game.
Participants also answered seven Likert-type questions on 5-point scales, answering the
following questions about the italicized attributes:

1. Understandable: “How confident are you that you understand the game described above?”,
where 1: not at all confident, 3: moderately confident, and 5: very confident

2. Fun to play: “How fun would it be to play the game yourself?”, where 1: not at all fun, 3:
moderately fun, and 5: extremely fun.

3. Fun to watch: “How fun would it be to watch someone else play this game?”, where 1: not
at all fun, 3: moderately fun, and 5: extremely fun.

16

4. Helpful: “Imagine that you played this game for several minutes. How fun would it be for
learning to interact with the virtual environment?”, where 1: not at all helpful, 3: moderately
helpful, and 5: extremely helpful.

5. Difficult: “Imagine that you played this game for several minutes. Do you think it
would be too easy, appropriately difficult, or too hard for you?”, where 1: far too easy, 3:
appropriately difficult, and 5: far too hard.

6. Creative: “How creatively designed is this game?”, where 1: not at all creative, 3: moder-
ately creative, and 5: extremely creative.

7. Human-like: “How human-like do you think this game is?”, where 1: not at all human-like,
3: moderately human-like, and 5: extremely human-like.

Evaluation statistical analyses: For each attribute and each game category (real, matched,
and unmatched, we report the mean score assigned by all participants to games in that
category for that attribute. We then also aggregate these attribute scores by category
and report a nonparametric Mann-Whitney U-test [57] for differences in outcomes, as
appropriate for ordinal data. See Supplementaryfor the full table including test
statistics and P-values. Significance results were highly similar when computing two-sample
t-tests as an alternative statistical test.

Mixed effect models: We are interested in modeling the relationship between the scores
predicted by our fitness function and the attributes human evaluators predicted. To that end,
we set up mixed effect regression models [71}139]. We fit separate models for each measure

as the dependent variable, regressing a continuous latent score (e.g., s}'p for the fun-to-play
measure, equation (2) belqw). We include fixed effects for the fitness score (x') and for
membership in the real (1;,,,) and matched (1}, ,.4) groups, treating the unmatched group
as a baseline. We include random effects for the individual participants (e,’ ~ N (0, (TI‘Z-))
and evaluated games (e;' ~ N(0, agZ)). We also fit a sequence of cut-points (equation (3))
that transform the latent score to the observed ordinal rating ygp (equation (4)). We suppress
the subscript for each measure below:

Sl = ﬁﬁtxl' + ﬁreal]]-ieal + ﬁmatched]]';natched + 651 + €§I + el/ el ~ '/\/’(0/0-) (2)
—00 =<1 < <3<yg <=0 3)
o1 < s <cp= observey =k 4)

Models without either random effect performed worse than the full model, so we report
results including both random effects. We fit cumulative link models for ordinal regression
[4,135] using the ordinal package [17] in R [70]. The results of these mixed-effect models
are summarized in (and see[Supplementary information G.2|and [Table SI-3|for
additional details).

Sample similarity comparison methods

For each real game and its corresponding matched game from those included in the human
evaluations, we examine which of our recorded participant interactions (see
above) fulfills one or more gameplay elements. We treat the setup (if specified

and each gameplay preference as a gameplay element — our aim here is to quantify which
participant interaction traces ‘play” a part of the game. We do this using our “reward
machine” — our implementation of an interpreter for goal programs in this domain-specific
language. For each pair of games, we then check which particular interactions either (a)
‘play’ parts of both games, (b) only fulfill components in the real game, or (c) only fulfill
components in the matched game. We color these proportions in purple, green, and blue

respectively in[Figure ED-5

17

References

[1] C. Addyman and D. Mareschal. Local redundancy governs infants” spontaneous orienting to
visual-temporal sequences. Child Dev., 84(4):1137-1144, Feb. 2013.

[2] K. R. Allen, E. Bréandle, M. M. Botvinick, J. Fan, S. J. Gershman, a. gopnik, T. L. Griffiths,
J. Hartshorne, T. U. Hauser, M. K. Ho, J. d. Leeuw, W. J. Ma, K. Murayama, J. D. Nelson, B. v.
Opheusden, H. T. Pouncy, J. Rafner, I. Rahwan, R. Rutledge, J. F. Sherson, O. Simsek, H. Spiers,
C. Summerfield, M. Thalmann, N. Vélez, A. Watrous, J. Tenenbaum, and E. Schulz. Using games
to understand the mind.

[3] M. M. Andersen, J. Kiverstein, M. Miller, and A. Roepstorff. Play in predictive minds: A cognitive
theory of play. Psychological Review, 130:462-479, 6 2023.

[4] A. Argesti. Categorical Data Analysis. John Wiley & Sons, third edition, 2018.

[5] S. Arora and P. Doshi. A survey of inverse reinforcement learning: Challenges, methods and
progress. Artif. Intell., 297:103500, Aug. 2021.

[6] J. T. Austin and]J. B. Vancouver. Goal constructs in psychology: Structure, process, and content.
Psychological Bulletin, 120:338-375, 11 1996.

[7] C. Baker, R. Saxe, and]. Tenenbaum. Bayesian theory of mind: Modeling joint belief-desire
attribution. In Proceedings of the annual meeting of the cognitive science society, volume 33, 2011.

[8] G.Baldassarre, T. Stafford, M. Mirolli, P. Redgrave, R. M. Ryan, and A. Barto. Intrinsic motivations
and open-ended development in animals, humans, and robots: an overview. Front. Psychol., 5:985,
Sept. 2014.

[9] D.E. Berlyne. Novelty and curiosity as determinants of exploratory behaviourl. Br.]. Psychol.
Gen. Sect., 41(1-2):68-80, Sept. 1950.

[10] T.Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean. Large language models in machine translation.
pages 858-867. Association for Computational Linguistics, 2007.

[11] L. Brown. Psychology of Motivation. Nova Science Publishers, 2007.

[12] C.Browne and F. Maire. Evolutionary game design. IEEE Transactions on Computational Intelligence
and Al in Games, 2(1):1-16, 2010.

[13] M. Charity, M. C. Green, A. Khalifa, and]. Togelius. Mech-elites: Illuminating the mechanic space
of gvg-ai. In Proceedings of the 15th International Conference on the Foundations of Digital Games,
pages 1-10, 2020.

[14] K. Chatzilygeroudis, A. Cully, V. Vassiliades, and J. B. Mouret. Quality-diversity optimization: a
novel branch of stochastic optimization. Springer Optimization and Its Applications, 170:109-135,
12 2020.

[15] T. Chen, K. R. Allen, S. J. Cheyette, J. Tenenbaum, and K. A. Smith. “just in time” representations
for mental simulation in intuitive physics. Proceedings of the Annual Meeting of the Cognitive Science
Society, 45(45), 2023.

[16] S.Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with applica-
tion to face verification. Proceedings - 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, CVPR 2005, 1:539-546, 2005.

[17] R. H. B. Christensen. ordinal—Regression Models for Ordinal Data, 2023. R package version
2023.12-4.

[18] J. Chu and L. E. Schulz. Play, curiosity, and cognition. Annual Review of Developmental Psychology,
2:317-343, 12 2020.

[19] J. Chu, J. B. Tenenbaum, and L. E. Schulz. In praise of folly: flexible goals and human cognition.
Trends Cogn. Sci., Apr. 2024.

[20] C. Colas, T. Karch, N. Lair, J. M. Dussoux, C. Moulin-Frier, P. F. Dominey, and P. Y. Oudeyer.

Language as a cognitive tool to imagine goals in curiosity-driven exploration. Advances in Neural
Information Processing Systems, 2020-Decem, 2 2020.

18

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(39]

[40]

[41]

C. Colas, T. Karch, O. Sigaud, and P.-Y. Oudeyer. Autotelic agents with intrinsically motivated
goal-conditioned reinforcement learning: a short survey. 12 2020.

A. Cully. Autonomous skill discovery with Quality-Diversity and unsupervised descriptors.
May 2019.

Y. Du, E. Kosoy, A. Dayan, M. Rufova, P. Abbeel, and A. Gopnik. What can Al learn from human
exploration? Intrinsically-Motivated humans and agents in Open-World exploration. In NeurIPS
2023 workshop: Information-Theoretic Principles in Cognitive Systems, Nov. 2023.

Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas. Guiding
pretraining in reinforcement learning with large language models. 7 2023.

C. S. Dweck. Article commentary: The study of goals in psychology. Psychological Science,
3(3):165-167, 1992.

J.S.Eccles and A. Wigfield. Motivational beliefs, values, and goals. Annu. Rev. Psychol., 53:109-132,
2002.

A.]. Elliot and J. W. Fryer. The goal construct in psychology. In J. Y. Shah, editor, Handbook of
motivation science (pp, volume 638, pages 235-250. The Guilford Press, xviii, New York, NY, US,
2008.

A. Fishbach and M. J. Ferguson. The goal construct in social psychology. In A. W. Kruglanski
and E. T. Higgins, editors, Social psychology: Handbook of basic principles, volume 2, pages 490-515.
The Guilford Press, xiii, New York, NY, US, 2007.

C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International conference on machine learning, pages 1515-1528. PMLR, 2018.

J. A. Fodor. The language of thought. Harvard University Press, 1979.

Q. Gallouédec, E. Beeching, C. Romac, and E. Dellandréa. Jack of all trades, master of some, a
Multi-Purpose transformer agent. Feb. 2024.

M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
Pddl - the planning domain definition language. 1998.

N. D. Goodman, J. B. Tenenbaum, J. Feldman, and T. L. Griffiths. A rational analysis of rule-based
concept learning. Cogn. Sci., 32(1):108-154, Jan. 2008.

A. Gopnik. Empowerment as causal learning, causal learning as empowerment: A bridge
between bayesian causal hypothesis testing and reinforcement learning. April 2024.

W. H. Greene and D. A. Hensher. Modeling Ordered Choices: A Primer. Cambridge University
Press, 2010.

L. Grillotti and A. Cully. Unsupervised behaviour discovery with Quality-Diversity optimisation.
June 2021.

M. K. Ho and T. L. Griffiths. Cognitive science as a source of forward and inverse models of
human decisions for robotics and control. Annual Review of Control, Robotics, and Autonomous
Systems, 5(Volume 5, 2022):33-53, 2022.

V. Hom and J. Marks. Automatic design of balanced board games. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 3, pages 25-30,
2007.

J. Hox, M. Moerbeek, and R. van de Schoot. Multilevel Analysis (Techniques and Applications). New
York, NY: Routledge, third edition, 2018.

M. E. Hyland. Motivational control theory: An integrative framework. Journal of Personality and
Social Psychology, 55(4):642, 1988.

R. T.Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcilraith. Using reward machines for high-level
task specification and decomposition in reinforcement learning. 2018.

R. T.Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcllraith. Reward machines: Exploiting reward
function structure in reinforcement learning. Journal of Artificial Intelligence Research 73 (2022),
73:173-208, 10 2022.

19

(43]

(4]

[45]

[46]

[47]

[60]

[61]

[62]

[63]
[64]

[65]

J. Jara-Ettinger. Theory of mind as inverse reinforcement learning. Current Opinion in Behavioral
Sciences, 29:105-110, Oct. 2019.

J. Jara-Ettinger, H. Gweon, L. E. Schulz, and J. B. Tenenbaum. The naive utility calculus: Compu-
tational principles underlying commonsense psychology. Trends Cogn. Sci., 20(8):589-604, Aug.
2016.

A. Khalifa, M. C. Green, D. Perez-Liebana, and J. Togelius. General video game rule generation.
In 2017 IEEE Conference on Computational Intelligence and Games (CIG), pages 170-177. IEEE, 2017.

E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani,
D. Gordon, Y. Zhu, et al. Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474, 2017.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and
think like people. Behav. Brain Sci., 40:€253, Jan. 2017.

P. H. Le-Khac, G. Healy, and A. F. Smeaton. Contrastive representation learning: A framework
and review. Oct. 2020.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F.]. Huang. A Tutorial on Energy-Based Learning.
MIT Press, 2006.

R. V. Lenth. emmeans: Estimated Marginal Means, aka Least-Squares Means, 2024. R package version
1.10.0.

B. G. Leon, M. Shanahan, and F. Belardinelli. In a nutshell, the human asked for this: Latent goals
for following temporal specifications openreview. ICLR 2022.

A. S. Lillard. The Development of Play, volume 3, pages 425-468. Wiley-Blackwell, 2015.

E. G. Liquin, F. Callaway, and T. Lombrozo. Developmental change in what elicits curiosity.
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43), 2021.

M. L. Littman, U. Topcu, J. Fu, C. Isbell, M. Wen, and J. MacGlashan. Environment-independent
task specifications via gltl. arXiv, 4 2017.

M. Liu, M. Zhu, and W. Zhang. Goal-Conditioned reinforcement learning: Problems and
solutions. Jan. 2022.

S. Liu, N. B. Brooks, and E. S. Spelke. Origins of the concepts cause, cost, and goal in prereaching
infants. Proc. Natl. Acad. Sci. U. S. A., 116(36):17747-17752, Sept. 2019.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. Ann. Math. Stat., 18(1):50-60, 1947.

D. Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual
Information. Henry Holt and Co., Inc., USA, 1982.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, 2015.

G. Molinaro and A. G. E. Collins. A goal-centric outlook on learning. Trends Cogn. Sci., 27(12):1150-
1164, Dec. 2023.

G. B. Moskowitz and H. Grant, editors. The psychology of goals, volume 548. Guilford Press, New
York, NY, US, 2009.

J.-B. Mouret and J. Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

OpenAl. GPT-4 technical report. Mar. 2023.

P-Y. Oudeyer, F. Kaplan, and V. V. Hafner. Intrinsic motivation systems for autonomous mental
development. IEEE Trans. Evol. Comput., 11(2):265-286, Apr. 2007.

S. Palan and C. Schitter. Prolific.ac—A subject pool for online experiments. Journal of Behavioral
and Experimental Finance, 17:22-27, Mar. 2018.

20

[66]
[67]

[68]

[69]

[70]

[71]

[72]

(76
[77]
(78

—_

[ier}

[79]

(80]

B. Pell. Metagame in symmetric chess-like games. 1992.

L. Pervin. Goal Concepts in Personality and Social Psychology. Psychology Library Editions: Social
Psychology. Taylor & Francis, 2015.

S. T. Piantadosi, J. B. Tenenbaum, and N. D. Goodman. Bootstrapping in a language of thought:
a formal model of numerical concept learning. Cognition, 123(2):199-217, May 2012.

J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier for evolutionary
computation. Frontiers in Robotics and Al, 3, 2016.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2023.

S. W. Radenbush and A. S. Bryk. Hierarchical Linear Models. Applications and Data Analysis Methods.
Thousand Oaks, CA: Sage Publications, second edition, 2002.

S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen,
R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A generalist agent. May 2022.

A. Ruggeri, O. Stanciu, M. Pelz, A. Gopnik, and E. Schulz. Preschoolers search longer when there
is more information to be gained. Dev. Sci., 27(1):e13411, Jan. 2024.

J.S. Rule, J. B. Tenenbaum, and S. T. Piantadosi. The Child as Hacker. Trends in Cognitive Sciences,
24(11):900-915, nov 2020.

A. M. Smith, M. J. Nelson, and M. Mateas. Ludocore: A logical game engine for modeling
videogames. In Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games,
pages 91-98. IEEE, 2010.

E. S. Spelke and K. D. Kinzler. Core knowledge. Dev. Sci., 10(1):89-96, Jan. 2007.
R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

F. Taffoni, E. Tamilia, V. Focaroli, D. Formica, L. Ricci, G. Di Pino, G. Baldassarre, M. Miroll,
E. Guglielmelli, and F. Keller. Development of goal-directed action selection guided by intrinsic
motivations: an experiment with children. Exp. Brain Res., 232(7):2167-2177, July 2014.

H. Tang, D. Key, and K. Ellis. Worldcoder, a model-based 1lm agent: Building world models by
writing code and interacting with the environment. arXiv preprint arXiv:2402.12275, 2024.

O. E. L. Team, A. Stooke, A. Mahajan, C. Barros, C. Deck,]J. Bauer, J. Sygnowski, M. Trebacz,
M. Jaderberg, M. Mathieu, et al. Open-ended learning leads to generally capable agents. arXiv
preprint arXiv:2107.12808, 2021.

A. Ten, P. Kaushik, P.-Y. Oudeyer, and J. Gottlieb. Humans monitor learning progress in curiosity-
driven exploration. Nat. Commun., 12(1):5972, Oct. 2021.

A. Ten, P-Y. Oudeyer, C. Moulin-Frier, I. C. Dezza, E. Schulz, and C. M. Wu. Curiosity-Driven
exploration. In The Drive for Knowledge: The Science of Human Information Seeking, pages 53-76.
Cambridge University Press, June 2022.

J. Togelius and J. Schmidhuber. An experiment in automatic game design. In 2008 IEEE Symposium
On Computational Intelligence and Games, pages 111-118. IEEE, 2008.

T. D. Ullman, E. Spelke, P. Battaglia, and]. B. Tenenbaum. Mind games: Game engines as an
architecture for intuitive physics. Trends Cogn. Sci., 21(9):649-665, Sept. 2017.

van den Oord Aaron, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. 7 2018.

J. Velez-Ginorio, M. H. Siegel,]. B. Tenenbaum, and J. Jara-Ettinger. Interpreting actions by
attributing compositional desires. In G. Gunzelmann, A. Howes, T. Tenbrink, and E. J. Davelaar,
editors, Proceedings of the 39th Annual Meeting of the Cognitive Science Society, CogSci 2017, London,
UK, 16-29 July 2017. cognitivesciencesociety.org, 2017.

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager:
An open-ended embodied agent with large language models. arXiv preprint arXiv:2305.16291,
2023.

21

[88] T. B. Ward. Structured imagination: the role of category structure in exemplar generation.
Cognitive Psychology, 27:1-40, 8 1994.

[89] L. Wong, G. Grand, A. K. Lew, N. D. Goodman, V. K. Mansinghka, J. Andreas, and J. B. Tenen-
baum. From word models to world models: Translating from natural language to the probabilistic
language of thought. June 2023.

[90] C.M. Wu, E. Schulz, M. Speekenbrink, J. D. Nelson, and B. Meder. Generalization guides human
exploration in vast decision spaces. Nature human behaviour, 2(12):915-924, 2018.

[91] A. Zook and M. Riedl. Automatic game design via mechanic generation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 28, 2014.

22

Extended Data

Game Creation Experiment

When answering the questions
below, please make sure to use the
names of the objects in the game.
Optional: please describe any setup
in the room (from its initial state)
required for your game:

To prepare the room for the game, ...

Please describe a game you could
play in this room:

To play my game, ...

Please explain the scoring system
for your game:

To score my game, ...

..

C) 4 e O () @)iz

Enable Usethe Move Interact Move an Rotate Crouch

How hard do you think your game is?

or mouse around withthe object the held or stand
disable tolook indigated forward object up What do you imagine you would
game around object or score on the first time playing your
controls backward game?

‘ | would score... ‘

Figure ED-1: Online experiment interface. The main part of the screen presents the AI2-THOR-based
experiment room. Below it, we depict the controls. To the right, we show the text prompts for creating
a new game (fonts enlarged for visualization). Our experiment is accessible online

Table ED-1: Mixed model result summary

Variable
Fitness 1[Matched] 1[Real]

Measure Brit Significance Bratched Significance Breal Significance
Understandable 1 0.846 xEE 0.525 - 1.151 o

Fun to play T 0.396 w* 0.629 * 1.059 i

Fun to watch © 0.191 - 0.641 * 0.912 il
Helpful® ¢ -0.189 * 0.349 * 0.232 -
Difficult -0.588 0.363 - -0.250 -
Creative T -0.486 o 0.551 - 0.438 -
Human-like © 0.570 i 0.837 i 1.446 i

Fitness scores significantly predict several attributes, including understandability and human-
likeness. Fitness scores show (statistically) significant positive effects on the understandability,
fun to play, and human-likeness attributes, and significant negative effects on the helpfulness,
difficulty and creativity questions. Accounting for the role of fitness, the matched group member-
ship shows significant effects only the fun to play and watch, helpfulness, and human likeness
questions. The real group shows significant effects on understandability, fun to play and watch,
and human likeness. See Supplementary [Table SI-3|for test statistics and P-values. *: P < 0.05, **:
P <0.01,**: P < 0.001

t: The full measure description is “Helpful for interacting with the simulated environment.”

In most measures, higher scores are better, indicated by the 1, other than Difficult *, in which

3 means “appropriately difficult”, and scores below and above indicate too easy and too hard
respectively.

23

https://game-generation-public.web.app/

a “Put the bin on the b
bed then throw balls

. o (setup (?h - bin) 2. Apply (setup (?h - bin)
into it (on bed 7h) mutgﬁoyn (on bed 7h) 3. Re-insert if
)) novel or more fi...

Games are (count (7b - ball) operator... (count (?b - ball)
d from (throw 7b 7h) e b 7b 7h)
(setup (7h - bin) N
natural language Cnibed 7)
to the DSL...) (count (7x - block) (count (?x - block)
(on bed 7x) (touch bed 7x)

(count (?b - ball))
(thrown_into ?b 7h)

)

(setup (7h - drawer)
Corruptions are {setup (7h - chair)
generated with ““{“P_ :"d i
random tree y e B

regrowth... (count (7b - ball)
(same or 7b 7h)

1. Sample game
from the archive...

)

!

Behavioral
Characteristic #2

l

Contrastive learning
is used to obtain a
quantitative metric of
human likeness... <+ Behavioral Characteristic #1

_/HEN_N
H EN

|

less more
Human-Likeness

Fitness

Figure ED-2: Parameter learning (left) and search (right) for the Goal Program Generator model.
Left: We contrastively learn a quantitative measure of human likeness by maximizing the distance
between human-generated exemplar games and a set of corruptions obtained through random tree
regrowth. Right: This measure is then used as the basis for quality-diversity optimization through
MAP-Elites. The algorithm maintains an archive of games that differ across phenotypic “behavioral
characteristics.” At each step, a game is randomly sampled from the archive (1), randomly mutated
(2), and re-evaluated for both fitness and its position in the archive. It is added to the archive only if it
would occupy a previously empty position in the archive or if it is more fit than the current occupant

3).

Occupancy Fithess
1.0 _ —
2 LI B
508 g
g > 30
© 1
g 06 £ o5
[2 —— MAP-Elites fitness mean
© 041 5 20 MAP-Elites fitness std
2 a 151 —— MAP-Elites fitness max
v 0.21 £ ---- Real game fithess range
< 0.0 L1040 e Real game fitness mean
0 250 500 750 1000 1250 1500 0 2000 4000 6000 8000
Generation (index) Generation (index)

Figure ED-3: Our implementation of the Goal Program Generator model fills the archive quickly
and finds examples with human-like fitness scores. Left: Our model rapidly finds exemplars for all
archive cells (i.e. niches induced by our behavioral characteristics), reaching 50% occupancy after 400
generations (out of a total of 8192) and 95% occupancy after 794 generations—the archive is almost
full 1/10th of the way through the search process. Right: Our model reaches human-like fitness scores.
After only three generations, the fittest sample in the archive has a higher fitness score than at least
one participant-created game. By the end of the search, the mean fitness in the archive is close to the
mean fitness of human games.

24

Please explain the game described above in
your own words:

Please explain the game in your own words. You cannot
paste into this field.

In a couple of sentences, please explain the game desribed
above in your own words.

How confident are you that you understand
the game described above?

How fun would it be to play game yourself?

How fun would it be to watch someone else
play this game?

Imagine that you played this game for several

minutes. How helpful would it be for learning
to interact with the virtual environment?

N Ima.gine that you pla_yed_ this game for several
Please read the following game description, imagine playing it in the room minutes. Do you think it would be too easy,
. . appropriately difficult, or too hard for you?
pictured above, and answer the questions below: [‘
Game Descrlptlon How creatively designed is this game?

How human-like do you think this game is?

Gameplay: While standing next to a desk, pick up and release
various objects to move them onto or off the bed.

N ‘

Scoring: You score 1 point for each object that is not a chair, laptop,
or doggie bed that comes to rest on the bed, 5 points for each chair,
laptop, or doggie bed that comes to rest on the bed, and you lose 5
points for each object that stops moving and is not on the bed.

What is your overall impression of this game?

Please provide your overall impression

In a couple of sentences, please describe your overall
impression of this game.

Figure ED-4: Human evaluations interface. For each game, participants viewed the same four images
of the environment, followed by the GPT-4 back-translated description of the game (see [Human|
[evaluation methods|for details. They then answered the two free-response and seven multiple-choice
questions on the right. In the web-page based version, the questions appeared below the game
description; they are presented side-by-side to save space.

25

B Shared

Figure ED-5: Proportion of human interactions activating only matched and real games in the same
cell. Each bar corresponds to a pair of corresponding matched and real games. In each bar, we plot
the proportion of relevant interactions (state-action traces) that are unique to the matched game (blue),
unique to the real game (green), or shared across both (purple). A few games (with the bar mostly
or entirely in purple) show high similarity between the corresponding games — under 25% (7/30)
share more than half of their relevant interactions. Most games, however, show substantial differences
between the sets of relevant interactions, with some showing a higher fraction unique to human games
and others to matched model games. The average Jaccard similarity between the sets of relevant
interactions for the matched and real game is only 0.347 and the median similarity is 0.180 (identical
games would score 1.0, entirely dissimilar games 0).

0.8 q

e
o
|

Proportion of activating traces
o
s
1

1.0+
I Unigue to generated game
Unique to human game
0.29

0.0- "
Archive cells

26

A Pseudocode and program summary translation

Q&“ ‘"
pajeand
e A[reuny pue

Sunyojew,, speod pajerousd

sy00/q
2gN0 JAYI0 OM} US3MISG PALDIMPUES S1 3j00]q
aqno anjq & se adA) awes 8y} J0 300[q 8qnO
Mmojjak & a1aym 0B} Aana 1oy juiod | pue
M ULIOU BU) Jeau sI pue Buinow 10U S ey}
1001q0 A1aAs 1oy SJulod G 196 noA :Bulioag

woos ay) punose sioslqo srow :Aejdewes

sweb
oy InoyBnoiyy s1ay; Aets Aewy sinsus pue B
S U0 00/ 8GN0 BNq Aine soeid :dnjes

uiq [euoBexay au; Jo doj uo Buinow sdoys
1ey) lleqioviseq Aiane Joj sjuiod Op pue ysep
& U Jeyo A1ae Joj juiod | 196 Nok :Bupioog

uiq jeucbexey
a1 4o do} uo puej Aeuy os SiEGIeYISEq
MoIY) puE S¥sEp O SeYo 0e(d :Aejdewes

Sweb sy JnoyBnoiy iey 1 desy
pue B oy Jesu uig [eucbexay e ind :dnjes

1 jo doj uo

PUE 8pisul }s81 0} S8W09 }i pue uiq [euobexay
au) ojul 1eqaBpop & moiy Alinjsseoons

noA swy yoes Joj juiod | uies noA :Buuoog

uiq [euobexay
3} Jo do} uo pue apisul Spue| I 1ey}
0s)l moJy) pue |[eqabpop e pjoH :Aejdawen

-eweb
aunuB By} Jo} 818} SUIBWIAI)| BINSUS pUE
Bnu oy Jeau uig [euoBexay e s0e|d :dnjes

aweb ayy
0 pua ayj je jjays doy ay uo Bunse si jeyy
Ilegabpop yoea 1oy juiod | 186 noA :Bulioag

SpU0Das (g JaYe spua aweb ay) :jeurua)

Jjays doy ay) uo 131 0) BWOO puE pue|
Ko 1ey) os s|leqabpop moiy) :Aejdawes

ug

JeuoBexey au; ul spue| jey} [[eqeBpop Aiene
10} sjuiod ¢ pue paq siBBop sy} UO SpUE| 1yl
leGeBPOp A1ens 10} sjuIod 7 196 oA :Burioog

paq ai660p
2y} 10 uig [euoBexay 8y} Jo do} Uo 10 BpISul
J8U)I® SPUE| }1 12U} OS I MOJY) PUE ‘[[2qaBPOp
© pjoy ¥sap e 0} }xau puejs :Aejdewen

uonisod z awes ayj Je ase Aay) jey) pue
aweb ay) Inoybnoiy) suonisod asayy ul Aeys
Aay) ains axepy "paq ay) uo uiq [euobexay

B pue Jooy} 8y} uo paq aibbop e aoeld :dnjeg

Wby sy Jaye

Buiyonoy Jo urebe) Buipjoy Jayye aie nok pue
‘llem & sayono)) ‘[leq ay) moiy) Ajjnyssaoons
noA awn yoes Joj juiod | 186 nok :Buuosg

11 4ONO} JO J YOIED JBYYIS UY) PUE [[EM
€ 53400} J| Jey) 0s ||eq e mouy) :Aejdowes

e ——]

Crosmrozoad 1w ah)

(prsons e fova

(s st fexe

x (o

T —
Sl s m sl

Crromor-sssetao-mpen

sonooy

-aqno Jayjoue pue ‘aqna mojjak & ‘aqno e o
SYOBJS OYBUW PUE ‘J/EM YIOU BU} JeaU S98/q0
Indf "B 8y} UO $390/q 8GN BN|q [jE 8Eld

¥sap oy uo suieyo Jnd pue 1 ojuo

sjieqjexseq mouy | bns ayj sesu uiq sy} 89ejq

o
s//eq mouy) pue ‘bns ayj sesu uiq oy} 89elq

Jiys doy ay uo puey
0} S/[eGaBPOP MOIY} O] SPUCISS OF SABY NOA

way} Jo 1ay}ie O}l S|[Eq MOIY} Y O] IXaU
paq Bop ay) pue paq ayj uo ulq 8y} 89eld

noA o} yoeq
S80UNOG UBY] [1EM BYY S I OS [[EG BY} MOIY]

(T T N T

Z# sweo paysje _ _

L# aweo paydjen

Z# aweo juediopied _ _

1# sweo juedioiied

"S[e08 pajeIsusd-[opow [9AOU , paydjewuun , oM} SUIpno (a1dmnd ur) suwmnod omj 3sef 9y} pue ‘sauo pajean-juedonred
-[opOW QLIDSIP (91N UI) SUWN[0D S[PPIW 0M} Y[, [¢ 9In3L]| pue|T 2In3Li| y30q Ul pauonusw juswtadxe o ur sawed
-yuedonred Tear JySiySny (Uea18 ur)suwun[od omy isiyy 9y [‘(g uoneurioyur Arejuswa[ddng|ass) aden3ue| [eInjeu 0} uone[SuLRI}-3deq dHeWoine -1, 4

‘(T uoryewrzoyur Areyuswarddng|ass) adendue] ogwads-urewop mo ur uorjejussardar urerdord syt 31 Jussardar 0 pasn am wrerdoxd spodopnasd ayy
‘o8en8ue[eanjeu ur uondrsap Arewrwns sjt woly Sunre)s ‘[eod a[durs e sprdep uwnjod yoeq 1§ Ino 0} apodopnasd urerSoxd yo uonersuery, :[-[g 2y

uopejsuell
oeg $-1dO

9po) Isa

apooopnasd

uondussaq
yous

27

B Full feature set

To simplify training fitness models, we ensure that all feature values are on the unit interval,
using the following feature types:

¢ A binary value (marked with [b])

* A proportion between zero and one ([p])

A real value discretized to two or more levels and treated as an indicator variable
(CLd], with the levels listed at the end of the description)

A float value normalized to the unit interval over the full dataset of positive and
negative games ([f])

For our n-gram features, we extract n-gram tokens from an in-order traversal of the syntax
tree. We use 5-gram models with stupid backoff [10] with a discount factor of 0.4, and report
the mean log score as the feature value, both jointly over the entire game program and
separately over the different sections (setup, preferences, terminal conditions, and scoring).

For our predicate play trace features, we use a simplified version of the predicate satisfaction
computation aspect of our reward machine (DSL program interpreter). We record, for every
human play trace we have, and each predicate listed below, for every object assignment that
satisfies it in that trace, all indices of states at which the predicate is satisfied. Recording
specific states allows to us compute conjunctions, disjunctions, and negations in addition to
individual predicate satisfactions. We limit ourselves to a subset of our predicates, which
covers over 95% of predicate references in our dataset: above, adjacent, agent_crouches,
agent_holds, broken, game_start, game_over,in, in_motion, object_orientation, on, open,
toggled_on, and touch. Any predicate that is not implemented is assumed to be feasible to
have been satisfied.

Our full feature set is:

ngram: Features using our n-gran model.

trained on the real games?

1. ast_ngram_full_n_5_score [f1: What is the mean 5-gram model score under an n-gram model

2. ast_ngram_setup_n_5_score [f]: What is the mean 5-gram model score of the setup section under
an n-gram model trained on the real game setup sections?

3. ast_ngram_constraints_n_5_score [f]: What is the mean 5-gram model score of the gameplay
preferences section under an n-gram model trained on the real game preferences sections?

4. ast_ngram_terminal_n_5_score [f]: What is the mean 5-gram model score of the terminal condi-
tions section under an n-gram model trained on the real game terminal sections?

5. ast_ngram_scoring_n_5_score [f]: What is the mean 5-gram model score of the scoring section
under an n-gram model trained on the real game scoring sections?

play_trace_database: Features using our play trace database.

1. predicate_found_in_data_prop [pl: What proportion of predicates are satisfied at least once in
our human play trace data?

2. predicate_found_in_data_small_logicals_prop [p]: What proportion of logical expressions over
predicates (with four or fewer children, limited for computational reasons) are satisfied at least once
in our human play trace data?

defined_and_used: Features reflecting whether particular game components are defined, and features
capturing whether defined components (such as variables, gameplay preferences, or objects in the
setup) are then also used elsewhere.

1. variables_used_all [b]: Are all variables defined used at least once?
2. variables_used_prop [pl: What proportion of variables defined are used at least once?

3. preferences_used_all [b]: Are all preferences defined referenced at least once in terminal or
scoring expressions?

28

4. preferences_used_prop [p]: What proportion of preferences defined are referenced at least once
in terminal or scoring expressions?

5. setup_quantified_objects_used [p]: What proportion of object or types quantified as variables in
the setup are also referenced in the gameplay preferences?

6. any_setup_objects_used [b]: Are any objects referenced in the setup also referenced in the game-
play preferences?

7. section_doesnt_exist_setup [b]: Does a game not have an (optional) setup section? (to allow
counteracting feature values for the setup for games that do not have a setup component)

8. section_doesnt_exist_terminal [b]: Does a game not have an (optional) terminal conditions
section? (to allow counteracting feature values for the terminal conditions for games that do not have
a terminal conditions component)

grammar_misuse: Features capturing various modes of grammar misuse—expressions that are
grammatical under the DSL but ill-formed, poorly structured, or whose values cannot vary over
gameplay.

1. adjacent_once_found [b]: Are there any cases where the once modal, which captures a single state,
is used twice in a row?

2. adjacent_same_modal_found [b]: Are there any cases where the same modal is used twice in a
row?

3. once_in_middle_of_pref_found [b]: Are there any cases where the once modal, which captures a
single state, is in the middle of a sequence of modals?

4. pref_without_hold_found [bl: Are there any cases where a sequence of modals is specified with
no temporally extended modal (hold or hold-while)?

5. identical_consecutive_seq_func_predicates_found [b]: Are there any cases where the same
exact predicates (and their arguments) are applied in consecutive modals (making them redundant)?

6. predicate_without_variables_or_agent [bl: Are there any predicates that do not reference any
variables or the agent?

7. nested_logicals_found [b]: Are there any cases where a logical operator is nested inside the same
logical operator (e.g., a negation of a negation, or a conjunction of a conjunction)?

8. identical_logical_children_found [b]: Are there any cases where a logical operator has two or
more identical children?

9. redundant_expression_found [b]: Are there any cases where a logical expression over predicates
is redundant (can be trivially simplified)?

10. unnecessary_expression_found [b]: Are there any cases where a logical expression over predi-
cates is unnecessary (contradicts itself, or is trivially true)?

11. repeated_variables_found [b]: Are there any cases where the same variable is used twice in the
same predicate?

12. repeated_variable_type_in_either [b]: Are there any cases where the same variable types is
used twice in an either quantification?

scoring_grammar_misuse: Features capturing similar failure modes to the above category, but
localized to the scoring and terminal sections of the DSL.

1. identical_scoring_children_found [b]: Are there any cases where a scoring arithmetic or logical
expression has two or more identical children?

2. redundant_scoring_terminal_expression_found [b]: Are there any cases where a scoring or ter-
minal expression is redundant (can be trivially simplified)?

3. unnecessary_scoring_terminal_expression_found [b]: Are there any cases where a scoring or
terminal expression is unnecessary (contradicts itself, or is trivially true)?

4. total_score_non_positive [b]: Do the scoring rules of the game result in a non-positive score
regardless of gameplay?

5. scoring_preferences_used_identically [bl: Do the scoring rules of the game treat all gameplay
preferences identically?

29

6. two_number_operation_found [b]: Are there any cases where an arithmetic operation is applied to
two numbers? (e.g. (+ 5 5) instead of simplifying it)

game_element_disjointness: Features capturing whether particular game elements are disjoint—for
example, gameplay preferences using disjoint sets of objects, or temporal modals using disjoint sets of
variables.

1. disjoint_preferences_found [bl: Are there any preferences that quantify over disjoint sets of
objects?

2. disjoint_preferences_scoring_terminal_types [pl: Do the preferences referenced in the scoring
and terminal section quantify over disjoint sets of object types?

3. disjoint_preferences_scoring_terminal_predicates [p]: Do the preferences referenced in the
scoring and terminal section use disjoint sets of predicates?

4. disjoint_seq_funcs_found [b]: Are there any cases where modals in a preference refer to disjoint
sets of variables or objects?

5. disjoint_at_end_found [b]: Are there any cases where predicate expressions under an at_end
refer to disjoint sets of variables or objects?

6. disjoint_modal_predicates_found [b]: Are there any cases where modals in a preference refer to
disjoint sets of predicates?

7. disjoint_modal_predicates_prop [p]: What proportion of modals in a preference refer to disjoint
sets of predicates?

counting: Features tracking node count or maximal depth in the four different DSL program sections.

1. node_count_section [d]: How many nodes are in the section, discretized to five bins with different
thresholds for each section.

2. max_depth_section [d]: What is the maximal depth of the syntax tree in the section, discretized to
five bins with different thresholds for each section.

pref_forall: Features capturing whether or not and how well the games use the forall over preferences
syntax.

1. pref_forall_used_correct [b]: For the forall over preferences syntax, if it is used, is it used
correctly in this game?

2. pref_forall_used_incorrect [b]: For the forall over preferences syntax, if it is used, is it used
incorrectly in this game? (to allow learning differential values between correct and incorrect usage)

3. pref_forall_external_forall_used_correct [b]: If the count-once-per-external-objects count
operator is used, is it used correctly in this game?

4. pref_forall_external_forall_used_incorrect [b]: If the count-once-per-external-objects
count operator is used, is it used incorrectly in this game?

5. pref_forall_pref_forall_correct_arity_correct [b]: If optional object names and types are
provided to a count operation, are they provided with an arity consistent with the forall variable
quantifications?

6. pref_forall_pref_forall_correct_arity_incorrect [b]: If optional object names and types are
provided to a count operation, are they provided with an arity inconsistent with the forall variable
quantifications?

7. pref_forall_pref_forall_correct_types_correct [b]: If optional object names and types are
provided to a count operation, are they provided with types consistent with the forall variable
quantifications?

8. pref_forall_pref_forall_correct_types_incorrect [b]: If optional object names and types are
provided to a count operation, are they provided with types inconsistent with the forall variable
quantifications?

B.1 Features Most Predictive of Real or Regrown Games

The following features (in order) had the largest weight, indicating they were most predictive
of positive (real, human-generated) examples in our dataset. The last three features all

30

capture the same concept, whether or not a setup section exists. We surmise the diffused
weights over them are a result of using weight decay (an L2 penalty) on the model weights:

1. ast_ngram_full_n_5_score

2. ast_ngram_constraints_n_5_score

3. predicate_found_in_data_prop

4. ast_ngram_setup_n_5_score

5. variables_used_all

6. preferences_used_all

7. ast_ngram_scoring_n_5_score

8. max_depth_setup_0 (which indicates a setup section does not exist or is very minimal)

9. node_count_setup_0 (which indicates a setup section does not exist or is very minimal)

10. section_doesnt_exist_setup

The following features (in order) had the smallest weights, indicating they were most
predictive of negative (regrown) examples in our dataset:

1. pref_forall_used_incorrect

2. pref_forall_pref_forall_correct_types_incorrect
3. disjoint_seq_funcs_found

4. repeated_variables_found

5. redundant_expression_found

6. pref_forall_pref_forall_correct_arity_incorrect
7. predicate_without_variables_or_agent

8. two_number_operation_found

9. nested_logicals_found

10. redundant_scoring_terminal_expression_found

C Objective function algorithm descriptions

below outlines how we train our fitness model. The number N of of positive
examples is fixed (98 in our full dataset), and fewer during cross-validation. We generate
M = 1024 negatives for each of the positive examples, and the number of features F is
fixed as well. We perform cross-validation to select hyperparameter values B € {1,2,4},
and K € {256,512,1025}, selecting the set that minimizes the cross-validated loss. We
optimize the model with SGD, with a learning rate 7 € {le — 3,4e — 3} also selected via
cross-validation. We use weight decay with A = 0.003 to regularize the model. We train
the model for up to 25000 epochs, or until the model plateaus for P = 500 epochs. After
cross-validation, we train our final objective function on the entire dataset. The final model
we report uses B = 1 positive games per batch, K = 1024 negatives samples from our entire
dataset for that positive, a learning rate 7 = 4¢ — 3, and F = 50 features.

31

Algorithm 1 Fitness model training loop

Input: Real games D € RN**IF regrown games D~ € RN*MxF
Input: Fitness model f : RF — R, optimizer
N positive examples, M negatives generated per positive, B batch size, F features, K
negatives sampled per positive in each epoch, P plateau epochs
Output: Converged fitness model Wy
best model <~ None
best loss <— oo
last improvement epoch < —1
for epoch i do
> Assign negatives randomly to each positive
Shuffle the first two dimensions of D~
> Reorder the positives in each epoch
Shuffle the first dimension of D"

for each batch do
X" « the next B positives >XT:Bx1xF
X~ ¢ K sampled negatives for each positive >X:BXxKxF
X + concat(X*,X") >X:Bx (1+K)xF
Y < fo(X) >Y: B x (1+K)
L < softmax loss(Y) > L: scalar
Take backward step on loss and optimizer step

end for

epoch validation losses < ||
for each batch in validation do
<the above procedure without the optimizer steps>
<append each batch’s loss to epoch validation losses>
end for
epoch loss <— mean(epoch validation losses)
if epoch loss < best loss then
best model <+ copy of fy(X)
best loss < epoch loss
last improvement epoch < i
else if i — last improvement epoch > P then
break
end if
end for
return best model

32

D MAP-Elites algorithm details

We use a set of 9 exemplar preferences as the basis for our MAP-Elites behavioral characteris-
tics, detailed in To score each game with respect to each exemplar preference, we
count how many of the game’s preferences are a close match to the exemplar. We explored
matching preferences by edit distance (in string or syntax tree space) but discovered the edit
distance is rather easily game-able by the model, producing semantically similar preferences
with high edit distance from each other. Instead, we represent each exemplar preference as
a binary feature vector, with features for which groups of predicates the preference uses (4
features: agent_holds or in_motion, in, on, and adjacent or near or touch), and for which
object categories the preference uses (5 features: balls, receptacles, blocks or buildings,
furniture or room_features, and small_items or large_items or the generic game_object).
Preferences in each archive game are also represented using this feature space. A preference
in an archive game is considered a match for an exemplar if it has an L1 distance of 0 or 1 in
this space, and if a preference matches more than one exemplar, a match is randomly chosen.
Exemplar preferences were iteratively chosen, starting from a seed preference (the first in
, and then greedily adding additional exemplars from the preferences defined in
participant-created games. At each step, the preference added was chosen to maximize the
number of participant-created preferences that would be considered a match (distance of 0
or 1) from the exemplar set. In addition, we include two other behavioral characteristics,
one capturing whether or not the game includes a setup component, and one capturing the
total number of preferences (up to 4). In total, this set of behavioral characteristics allows
for an archive size of 2000 games, of which 20 have one preference (matching one of the 9
exemplars or matching none of them, with and without a setup component), 110 have two
preferences, 440 have three preferences, and 1430 have four preferences.

In addition, we add one more “pseudo behavioral characteristic” that explicitly captures a
few general coherence properties of games — specifically features that we expect either all
plausibly human-generated games to either exhibit or none of them to exhibit. While these
features are also used by our learned fitness function, we use this behavioral characteristic
as a sort of first-stage filter: if a game fails to meet these criteria, then it cannot reasonably
be said to be “human-quality,” regardless of its fitness evaluation. For all reported games,
we ensure that each of the criteria are satisfied. The criteria included in this behavioral
characteristic include whether all all variables are defined / used in preferences, whether all
preferences are used in either terminal or scoring conditions, and whether the game avoids
a set of grammatical but obviously nonsensical or redundant expressions. There are a total
of 21 features used in this behavioral characteristic. This “pseudo behavioral characteristic”
doubles the size of the archive (from 2000 games to 4000 games), though we never evaluate
any game from the half of the archive in which this feature is false.

We begin the MAP-Elites algorithm by generating 1024 random games from the PCFG. We
then sort each of the games in descending order of fitness and add them to the archive until
either (a) every possible value of each behavioral characteristic is represented by at least one
game (note that this is not the same as every possible combination of behavioral characteristic
values being represented), or (b) at least 128 cells of the archive are occupied.

We run MAP-Elites for 8192 “generations,” where each generation consists of 750 potential
updates in which we randomly select a parent game, sample a mutation operator to apply,
and potentially add the resulting mutated game to the archive.

E DSL to natural language back-translation

In order to prepare games for human evaluation, we convert them from the DSL to natural
language in a multi-stage process. In order to ensure consistency, we perform this back
translation on both generated games and the real games (as opposed to using the original
human-authored descriptions).

In the first stage of back-translation, a rule based system converts the DSL into templated
language by concretely describing the definition of each predicate and grammatical rule. For
instance, the expression (once (and (agent_holds ?d) (adjacent ?p agent))) is converted

33

Table SI-1: Exemplar preferences used as MAP-Elites behavioral characteristics.

Exemplar Preference

| Description (GPT-4 back-translated) |

Exemplar Features

(preference throwAttempt
(exists (?b - dodgeball)

(then
(once (agent_holds ?b))
(hold (and (not (agent_holds ?b)) (in_motion ?b))
)
(once (not (in_motion ?b)))

M)

(preference throwInBin
(exists (?b - ball ?h - hexagonal_bin)
(then
(once (and (on rug agent) (
(hold (and (not (agent_hol
)
(once (and (not (in_motion ?b)) (in ?h ?b)))

ent_holds ?b)))
s ?b)) (in_motion ?b))

)

(preference ballThrownToBed
(exists (?d - dodgeball)

(then
(once (and (agent_holds 2d) (adjacent desk agent)
)
(hold (and (not (agent_holds ?d)) (in_motion ?d))
)
(once (and (not (in_motion 2d)) (on bed ?d)))

M)

(preference itemInClosedDrawerAtEnd
(exists (?g - game_object)
(at-end
(and
(in top_drawer ?g)
(not
(open top_drawer)

D)

(preference watchOnShelf
(exists (?w - watch ?s - shelf)
(at-end
(on ?s w)

M)

(preference gameBlockFound
(exists (?1 - block)

(then
(once (game_start))

(hold (not (exists (?b - building) (and (in ?b ?1
) (is € 7))

(once (agent_holds

)

(preference matchingBuildingBuilt
(exists (?b1 ?b2 - building)
(at-end (and

(is_setup_object ?b1)
(not (is_setup_object ?b2))
(forall (?11 ?12 - block) (or
(not (in ?b1 ?11))
(not (in ?b1 ?12))
(not (on ?11 ?12))
(exists (?13 ?14 - block) (and
(in ?b2 ?13)
(in ?b2 ?14)
20000

(preference ballDroppedInBin
(exists (?b - ball ?h - hexagonal_bin)

(then
(once (and (adjacent ?h agent) (a 10lds ?b)))
(hold (and (in_motion ?b) (not (ag 10lds ?b)))

)
(once (and (not (in_motion ?b)) (in ?h ?b)))
)

(preference pillowMovedToRoomCenter
(exists (20 - pillow) (then
(once (and (agent s 20)))
(hold (and (in_motion ?0) (not (agent_holds ?0)))

)

(once (and (not (in_motion ?0)) (near room_center
?0) (exists (?01 202 ?03 - game_object) (
and (same_color ?01 pink) (near
room_center ?01) (same_color ?02 blue) (

near room_center ?02) (same_color ?03
brown) (near room_center ?03)))))

M)

This preference is satisfied when:
-first, the agent holds a dodgeball
-next, the agent throws the dodgeball

-finally, the dodgeball stops moving

This preference is satisfied when:
-first, the agent is standing on the rug and holding a ball
-next, the agent throws the ball

-finally, the ball stops moving and is inside a hexagonal bin

This preference is satisfied when:
-first, the agent holds a dodgeball while standing next to a desk
-next, the agent throws the dodgeball

-finally, the dodgeball stops moving and is on the bed

This preference is satisfied when:
-at the end of the game, a game object is inside the top drawer

and the top drawer is closed

This preference is satisfied when:

-at the end of the game, a watch is on a shelf

This preference is satisfied when:

-first, the game begins

-next, throughout the game, the block is not part of a building
that is used in the setup

-finally, the agent picks up the block

This preference is satisfied when:

-at the end of the game, one building is part of the setup while
the other is not

-and for any two blocks, neither is inside the building that is
part of the setup

-if one block is not on top of the other, then there must be two
other blocks of the same types inside the building that is not

part of the setup, with one of these blocks on top of the other

This preference is satisfied when:
-first, the agent is next to a hexagonal bin and is holding a ball
-next, the agent throws the ball

-finally, the ball stops moving and is inside the hexagonal bin

This preference is satisfied when:

-first, the agent picks up a pillow

-next, the agent throws the pillow and it is no longer being held
by the agent

-finally, the pillow stops moving near the center of the room,
and there are three other objects near the center of the room as

well: one that is pink, one that is blue, and one that is brown

Uses predicate agent_holds or in_motion

Uses object category balls

Uses predicate agent_holds or in_motion
Uses predicate in

Uses predicate on

Uses object category balls

Uses object category receptacles

Uses object category furniture or room_features

Uses predicate agent_holds or in_motion
Uses predicate on

Uses predicate adjacent or near or touch
Uses object category balls

Uses object category furniture or room_features

Uses predicate in

Uses object category receptacles

Uses object category small_objects or large_objects or
any_object

Uses at_end

Uses predicate on

Uses object category furniture or room_features

Uses object category small_objects or large_objects or
any_object

Uses at_end

Uses predicate agent_holds or in_motion
Uses predicate in

Uses object category blocks or building

Uses predicate in
Uses predicate on
Uses object category blocks or building

Uses at_end

Uses predicate agent_holds or in_motion
Uses predicate in

Uses predicate adjacent or near or touch
Uses object category balls

Uses object category receptacles

Uses predicate agent_holds or in_motion
Uses predicate adjacent or near or touch
Uses object category furniture or room_features

Uses object category small_objects or large_objects or

any_object

to “there is a state where (the agent is holding ?d) and (?p is adjacent to agent).” Each of the
game’s setup conditions, preferences, terminal conditions, and scoring rules are rendered in
this form, which also includes the mapping from variable names (e.g. ?d) to the types of
objects that can occupy the variable (e.g. “dodgeball”). An example of a game’s preferences
described in this form is presented below:

The preferences of the game are:

----- Preference 1-----

The variables required by this preference are:
-?p of type pyramid_block

-?d of type dodgeball

-?h of type hexagonal_bin

This preference is satisfied when:

- first, there is a state where (the agent is holding ?d) and (?p is adjacent to agent)

- next, there is a sequence of one or more states where (it's not the case that the agent is holding ?d) and (?d is in motion)
- finally, there is a state where (it's not the case that ?d is in motion) and (?d is inside of ?h)

The variables required by this preference are:
-?b of type building

-?1 of type cube_block

-?f of type flat_block

This preference is satisfied when:
- in the final game state, (?f is used in the setup), (?f is inside of ?b), and (?1 is inside of ?b)

Next, we use the GPT-4 large language model (LLM) [63] to simplify the templated de-
scription into a more naturalistic form (specifically gpt-4-1106-preview). The objective of
this stage is to re-write any unclear formulations generated by the initial procedure and to
replace abstract variable names with their actual referents. We convert each section of the
game separately, using a similar prompt for each. The prompt begins with the following
message:

“Your task is to convert a templated description of a game’s <setup / rules / terminal
conditions / scoring conditions> into a natural language description. Do not change the
content of the template, but you may rewrite and reorder the information in any way you think
is necessary in order for a human to understand it. Use simple language and verbs that would be
familiar to a human who has never played this game before.”

We then include 10 examples of this kind of translation taken from the set of human games
not used in our experiments. An example of the same preferences in this simplified form is
presented below:

The preferences of the game are:

————— Preference 1-----

This preference is satisfied when:

-first, the agent holds a dodgeball while standing next to a pyramid block
-next, the agent throws the dodgeball

-finally, the dodgeball lands inside a hexagonal bin and stops moving

This preference is satisfied when:
-at the end of the game, a flat block is used in the setup of a building and both a cube block and the flat block are inside the
building

Finally, we use the LLM again to collect the separate descriptions of each section into one a
single block, further simplifying the language and expressions. The prompt is similar to
that used in the previous stage, and again is followed by 10 selected examples:

“Your task is to combine and simplify the description of a game’s rules. Do not change the content of
the rules by either adding or removing information, but you may rewrite and reorder the information
in any way you think is necessary in order for a human to understand it. Use simple language
and verbs that would be familiar to a human who has never played this game before. DO describe
preferences carefully, such that a player reading the description can easily play the game. DO NOT
include explicit references to a game’s preferences (i.e. "Preference 1” or "Preference 2”). DO NOT
include descriptions of setup or terminal conditions if they do not appear in the game.”

Examples of complete translations are available in[Figure 4)and [Figure 5|

35

F Model sample and real game edit distance similarity

We analyze our model’s results through the lens of the MAP-Elites behavioral characteristics
we use, as they functionally define diversity for our model (see[MAP-Elites methods|and
[Supplementary information D|for additional details). When we present results from the
model, such as in|Figure 4} we present matched model samples alongside the real participant-
created games that MAP-Elites maps to the same archive cell. However, there are other
ways to determine similarity in a high-dimensional space, such as the one our program
representations occupy. We wish to offer additional evidence for the degree of distinctiveness
of the model-generated samples. One reasonable approach to similarity is an edit distance:
for simplicity, we use the string (Levenshtein edit distance). Each program’s syntax tree
is rendered as a string. We then remove the preamble that includes the game name, and
combine consecutive white space tokens to a single space. For each of the six model-
generated games we present in figures [Figure 4|and [Figure 5 we compute the edit distance
to all 98 real participant-created games, and present the real game with the smallest edit
distance to each of these samples.

In one case (Matched Game #1), this is the same participant game that occupies the same
archive cell. In the other two matched games, the nearest game is different. In both
cases, the nearest participant-created game retains some high-level similarity, but with
different gameplay objectives than the ones our model proposed. We also present the
nearest matches for the closest unmatched model-created games in figure Here we
find the nearest model games further away, both in edit distance and conceptually in the
goals the programs represent. We take this as further evidence our model generates creative
samples, meaningfully different from participant-created ones.

36

oy} £q pamseaw se ‘oured pajeand-juedonred [ear tefruurs 3sow 9y} 1 MO[aq yussaid am

"90UR)SIP TP UTOISUDA]
‘(szopeay ardnd yyim suwniod saxy 3sef)|g amSLy| pue (sopesy anjq

YIIM suwmjod 391y} 3s11)|f aam3rj|ur pajussard sjdures pajeroussd-opow yoea 104 "sajdures [apowr pajda[as 03 surerSoxd [ear ysareau adue)sip 3py :¢-IS 31y

s) (-

(3 amapmor) 1)

e srer) (-GS

_ (691) sweo uewnH jseso|y

(ze2) sweo uewny jseso|ny

|

(€51) sweo uewny jseso|ny

(19) sweo uewnH }saso|) _

(201) sweo uewnH jseso|n

(resuezezezd aumos)
((ooouo0zead awmod) p- .

(TTeQFT08 - 14, urq-TevoBexey - 04
ooouszozerd

(Awem wremop:) (1-gp-gL1g-0n0 owed)

««

(0 (emra-Te303) =<
reurazes:))

e

)

]

oz,

(TTeaepop -
oeouaza:

saurex3suos:)
(w03 wremop:) (0-67Z-GL78-0n® owed) ourzop)

<«

(0souszez0zd 3um0O
((0ooue30302d 3w03) 0

(100Ta ~ £a; Ao0Tq TeTNITEILRITTeA
- ZaL W9OTA - 1Az A00TA - 082)
ooowozegoad souo

)|
(Awew uremop:) (0-gg-9418-0ne ewed) eutzep)|

Z# awep paysjep |

L# sweD paydjen

37

G Human evaluations data analysis

G.1 Detailed human evaluation results
Table SI-2: Human evaluation result summary

Mean score by category Real vs. Matched Real vs. Unmatched Matched vs. Unmatched
Attribute Real Matched Unmatched | U-stat, P-value U-stat, P-value U-stat, P-value
Understandable 3.943 3.923 3.331 45088.0, P = 0.906 559215, P < le—5* 55846.0, P < 1e—5**
Fun to play 2.522 2.430 2.068 467525, P = 0.352 54040.5, P < le—5*** 52539.5, P < le—3***
Fun to watch 2.385 2.313 2.024 46169.0, P = 0.519 51636.5, P < le—3*** 50515.0, P = 0.001**
HelpfulJr 2.997 2.987 2.840 44802.0, P =0.982 473725, P = 0.078 47559.0, P =0.075
Difficult 2.582 2.660 2.676 429215, P =0.326 422185, P = 0.419 44081.0, P =0.947
Creative 2.318 2.213 2.143 47036.0, P = 0.282 48286.0, P = 0.025* 46615.0, P =0.182
Human-like 2.813 2.670 2.119 47698.0, P = 0.167 58679.0, P < le—5*** 554345, P < le—5***

Evaluators don’t distinguish between participant-created real and matched model games, but do distinguish unmatched games

from both. Participants responded to seven Likert questions on a 5-point scale, one for each attribute in the first column (see

[evaluation methods|for additional details). We report the Mann-Whitney U test [57] for differences in outcomes, approp

ordinal data. *: P < 0.05, **: P < 0.01, ***: P < 0.001
t: The full measure description is “Helpful for interacting with the simulated environment.”

riate for

G.2 Mixed-effect model analyses

In the [Human evaluations|section, we briefly describe the mixed effect model we fit to
analyze our human evaluation results and analyze the learned regression weights for the
fitness function. Here, we build on this analysis to examine the extent to which accounting
for the mediating effect of fitness scores, changes our previous observations regarding the
differences between groups. Using the unmatched group as the baseline, the regression coef-
ficients Batched and PBreal quantify these differences for each measure. We find statistically
significant differences for the matched group (i.e. Bmatched > 0) for ratings of fun to play, fun
to watch, helpfulness, and human likeness. Similarly, we observe statistically significant
differences (Brea1 > 0) for ratings of understandability, fun to play and watch, and human
likeness. Finally, using the marginal (least-squares) means method[50], we directly compare
the matched and real categories and again find no statistically significant differences (see

[Human evaluation methods|for additional details and Supplementary [Iable SI-4|below for

the full results).

Table SI-3: Mixed model result summary

Fitness Matched Real

Attribute Bfitness Z P-value Bmatched Z P-value Breal Z P-value
Understandable 0.846 5625 P < le—5*** 0525 1.766 P =0.078 1.151 4.036 P < le—3***
Fun to play 0396 2936 P =0.003** 0.629 2298 P =0.022* 1.059 4.021 P <le—3***
Fun to watch 0191 1469 P =0.142 0.641 2414 P =0.016* 0912 3547 P < le—3***
Helpful® -0.189 -2.163 P =0.031* 0.349 2.048 P =0.041* 0232 1441 P=0.15
Difficult -0.588 -3.443 P < le—3*** 0363 1.029 P =0.304 -0250 -0.740 P =046
Creative -0486 -3.191 P =0.001** 0551 1.776 P =0.076 0438 1467 P =0.142
Human-like 0570 4316 P < le—3*** 0.837 3.128 P =0.002** | 1446 5597 P <le-5"**

Fitness scores significantly predict several attributes, including understandability and human-likeness. Fitness scores show
(statistically) significant positive effects on the understandability, fun to play, and human-likeness attributes, and significant
negative effects on the difficulty and creativity questions. Accounting for the role of fitness, the matched group membership
shows a significant effect only on human likeness. The real group shows significant effects on understandability, fun to play
to watch, and human likeness. *: P < 0.05, **: P < 0.01, *: P < 0.001
t: The full measure description is “Helpful for interacting with the simulated environment.”

G.3 Marginal Means Analysis

38

Table SI-4: Mixed model marginal means comparison summary

Real — Matched Real — Unmatched Matched — Unmatched
Attribute Diff Z P-value Diff Z P-value Diff Z P-value
Understandable T 0.626 2.055 P =0.100 1.151 4.036 P <1e-3** | 0525 1.766 P =0.181
Fun to play 1 0.430 1.577 P = 0.256 1.059 4.021 P <1le—3*"* | 0.629 2298 P =0.056
Fun to watch 1 0.271 1.025 P =0.561 0912 3.547 P = 0.001** 0.641 2414 P =0.042*
Helpful+ T -0.117 -0.701 P =0.763 0.232 1441 P =0.32 0.349 2048 P =0.101
Difficult * -0.613 -1.725 P =0.196 | -0250 -0.740 P =0.74 0.363 1.029 P =0.559
Creative T -0.113 -0364 P =0.93 0.438 1467 P =0.307 0551 1.776 P =0.178
Human-like © 0.609 2299 P =0.056 1.446 5597 P <1le-5** | 0.837 3.128 P = 0.005**

We use the method of marginal (least-squares) means [50] to estimate the mean score for each attribute in each category,
holding fitness constant. None of the comparisons between the real and matched groups are significant, and several
(though not all) of the previously significant comparisons remain significant. *: P < 0.05, **: P < 0.01, ***: P < 0.001
t: The full measure description is “Helpful for interacting with the simulated environment.”

In most measures, higher scores are better, indicated by the 1, other than Difficult *, in which 3 means “appropriately
difficult”, and scores below and above indicate too easy and too hard respectively.

G.4 Matched-real game similarity analysis

To functionally measure similarity, we leverage the fact that our goal programs are in-
terpretable and automatically evaluate them on all gameplay interactions generated by
participants in our first experiment. For each matched game and its corresponding real
counterpart, we measure the number of interactions that fulfill a gameplay element in only
the matched game, only the real game, or both. While some pairs of games have their
elements fulfilled by the same interactions (suggesting functional similarity), most pairs are
not — under 25% (7/30) share more than half of their relevant interactions. Furthermore,
the average Jaccard similarity between the sets of relevant interactions for the matched and
real game is only 0.347 and the median similarity is 0.180 (identical games would score 1.0,
entirely dissimilar games 0; and see summary in and methodological details in
[Sample similarity comparison methods).

H Model ablations

H.1 Common sense ablation

The domain-specific language we use is underconstrained—many expressions that are
grammatical either make no sense at all (e.g., checking a bin is in a ball, rather than a
ball in a bin) or violate intuitive physical common sense (e.g., creating a game stacking
balls, as opposed to stacking blocks). We primarily operationalize the concept of physical
common sense using two of our fitness features, discussed in [Fitness function methods|and
Supplementary information B} Both use a dataset of interaction traces (see[Dataset collection|
methods) to estimate the feasibility of predicate role-filler expressions, by computing the
proportion of predicate expressions (and the object types they operate over) that have
appeared at least once over the set of interactions of users with the environment. While this
condition is not necessary (as it is unlikely experiment participants explored every feasible
configuration of objects in the environment), it is sufficient to determine feasibility and,
therefore, serves as a good proxy for intuitive common sense. The first feature operates over
individual predicates, e.g. estimating that (on desk ball) is more likely than (on desk

bed). The second feature operates on logical expressions over predicates, and might help

catch contradictory predicates that are independently feasible, such as ((on desk ball
)(on bed ball)), that is, the ball might feasibly be on the desk or on the bed, but not on
both.

We know that these features are helpful for our model, as the individual predicate version of
these features has the third highest weight of all features that predict real human-generated
games (see[Supplementary information B.1|for details). To further evaluate the importance

39

of these features, we fit a version of our fitness model that has no access to them, and use it
as the objective for our model. Unsurprisingly, when we evaluate samples from this ablated
model on the full fitness function (with the interaction trace features), they have statistically
significantly lower fitness scores than the samples from the full model (matched-pairs ¢-test
matching by archive cells, t = —32.66, P < 1e—10). To offer a more fair comparison, we use
the full “reward machine” and dataset of play traces. We assign a binary score to each game
from the full and ablated models, 1 if each game component (gameplay preferences and
the setup section (if one exists)) is satisfied at least once over the dataset, either in the same
trace or in different traces. If at least one game component is never satisfied, we assign a
score of 0. We find that 1515 (75.75%) of the games in the full model score 1, while only 584
(29.20%) in the ablated model do. This difference is, as expected, also statistically significant
(matched-pairs t-test, t = —33.29, P < 1le—10). We conclude that intuitive physical common
sense is helpful to our model, as allowing our model to approximate the physical sensibility
of predicates helps the model generate games with components that have been satisfied by
our participants.

H.2 Compositionality ablation

Evaluating the role of compositionality in our model is challenging as the model operates
on a domain-specific language that is inherently highly compositional. Given the nature of
program representations, it’s difficult to imagine a non-compositional counterfactual DSL to
compare to — so we cannot compare to an entirely non-compositional model. Instead, we
ablate by varying how compositional we allow our MAP-Elites mutation operators to be.
The primary operator embodying compositionality is the crossover operator, which samples
two programs from the MAP-Elites archive, randomly selects exchangeable sub-trees from
both programs, and creates new candidates with these trees swapped between the programs.
We also implemented several custom operators (beyond the evolutionary programming
staples of mutation, insertion, deletion, and crossover). Many of these implement targeted
variations of crossover that we considered to be plausible higher-level changes a person
might make to a game they are creating, such as sampling a preference from another game
and then changing the preference’s initial or terminal conditions. We report two ablations,
one (“No Custom Ops”) where we omit the custom operators we implemented (keeping
only regrowth, insertion, deletion, and crossover), and a second (“No Custom Ops, No
Crossover”) where we also remove the crossover operation. We keep all other model details
identical, crucially both the set of behavioral characteristics and fitness function, allowing
us to directly compare the fitness values of games in the archives in the ablated models.

We visualize the results of these in While removing our custom operators
appears to slightly increase the mean fitness of exemplars (Figure SI-3a} orange), removing
the crossover operation drastically decreases the fitness of games in that model’s archive
(Figure SI-3a] green). This provides evidence that allowing our search procedure to take
advantage of the compositionality in our domain is greatly beneficial in generating high-
quality samples across our archive. If our custom operators do not increase mean fitness,
what impact do they have? To quantify this question, we evaluated samples from the ablated
models through the full “reward machine.” For each sample, we counted how many of the
participant interaction traces saw the participant fulfilling one or more gameplay elements
from the sample. In other words, how many participants (unwittingly or otherwise) fulfilled
at least part of the model-generated goal program? We find that the custom operators help
increase this number — samples generated from our full model show the highest number
of relevant traces blue). This could have two interpretations: one is that the
custom operators push more goals toward higher feasibility. Another is that this behavior
is a form of mode-seeking that helps the model generate goal programs that capture more
common behaviors, as opposed to more meaningful variability. In all, we take this as an
effect that crossover is crucial to generating fit samples across our MAP-Elites archive, with
some cost to diversity which our custom operators help reduce.

40

H.3 Coherence ablation

As we iterated on earlier versions of our model, we discovered some ‘softer’, higher-level
issues repeatedly surfacing in model-generated goal programs. Even after implementing
features that helped the model avoid some types of low-level mistakes (such as instantiating
variables or preferences and never referencing them), and introducing approximations to
intuitive physical common sense (discussed above), some aspects of the generated games
remained incoherent. A lower-level example might be disjointedness in the arguments of
temporal modals. Consider, for instance, a preference whose modals translate to natural
language as “start with a state where the agent holds a ball, then find a collection of
states where a block is on the bed, and finish with a state where the bin is upside down”.
The awkwardness in explaining this perfectly grammatical preference (program below) is
that each modal ((L), (...)) refers to a distinct set of objects, and so it feels
unnatural to specify a sequential temporal preference over them.

(preference0
((?v0 — hexagonal_bin ?v1 — ball ?v2 — block)
(
((vl))
((on desk ?v2))
((?v0 upside_down))
)

We observed similar, higher-level issues regarding coherence between different gameplay
preferences (do they use the same objects and predicates, or distinct sets?). Specifically,
we observed cases where game scoring conditions and ending conditions have nothing to
do with each other. A game might specify that it ends after a ball has been thrown five
times, with points scored for every block placed on the desk. There is nothing wrong per
se with this specification, but it feels unnatural—we would expect either the ball-throwing
to contribute to scoring, or the block-stacking to allow the game to end, or both. We
wrote a collection of fitness features to try to capture occurrences of such incoherence (see
game_element_disjointness in[Supplementary information B). We have some indication
that these features are important from observing that our fitness model assigns one of them
the third-largest negative weight (predictive of corrupted, negative games). To ablate the
effect of this feature group, we perform an ablation similar to the common sense ablation
reported above—we fit a fitness model without these features and use it to guide our MAP-
Elites search. As a first sanity check, we compute fitness scores under the full fitness model
for games generated by the ablated model. We find that scores in the ablated model are
consistently lower (matched-pairs t-test, t = —26.99, P < 1e—10), indicating that without
access to these features, our model would generate programs that violate these coherence
considerations. We also evaluate games from this ablated model using the ‘reward machine’
and play traces dataset, as we did above. As before, 1515 (75.75%) of games in the full
model have every component satisfied, while only 1224 (61.2%) in the ablated model do.
This difference is also statistically significant (matched-pairs t-test, t = —9.73, P < 1e—10).

41

>

No Cust‘um Ops
No Crossover

Full Model No Custom Ops

Ablation

(a) Removing crossover drastically lowers fit-
ness values. We plot, for each game generated
by a model, its fitness score under the full fitness
function. Left: The distribution of fitness scores
in our full model. Middle: Removing the custom
operators has little effect on the distribution of
fitness scores. Right: Removing crossover drasti-
cally lowers the fitness scores of model samples.

Number of activating traces

o

No Custom Ops
No Crossover

Full Model No Custom Ops

Ablation

(b) Removing custom operators lowers mean
trace coverage; removing crossover undoes
some of the effect. We measure, for each game
generated by a model, how many participant
interaction traces fulfill at least one gameplay el-
ement. Left: Of the ablations reported, our full
model shows the highest number of active traces.
Middle: removing our custom mutation oper-
ators lowers the mean number of active traces.
Right: Removing crossover as well undoes some
of the effect of removing the custom operators.

Figure SI-3: The crossover operator helps generate fit goals, while the custom operators help
generate solutions with higher trace coverage. Left: removing the custom operators does hurt mean
fitness scores; removing the crossover operator does. Right: removing the custom operators leads the
model to generate samples covering fewer participant interaction traces on average. This could be
evidence of lower feasibility (more samples in the “no custom ops” model are active in barely a few
traces) or of mode seeking (more samples in the full model are active in a very high number of traces).

42

I Full domain-specific language description

I.1 DSL Grammar Definitions

A game is defined by a name, and is expected to be valid in a particular domain, also
referenced by a name. A game is defined by four elements, two of them mandatory, and
two optional. The mandatory ones are the (constraints) section, which defines gameplay
preferences, and the (scoring) section, which defines how gameplay preferences are counted
to arrive at a score for the player in the game. The optional ones are the (setup) section,
which defines how the environment must be prepared before gameplay can begin, and the
(terminal) conditions, which specify when and how the game ends.

(game) == (define (game (ID))
(:domain (ID))
(:setup (setup))
(:constraints (constraints))
(:terminal (terminal))
(:scoring (scoring))

(id) == /[a-z0-9][a-z0-9]+/ # a letter or digit, followed by one or more letters, digits, or
dashes

We will now proceed to introduce and define the syntax for each of these sections, followed
by the non-grammar elements of our domain: predicates, functions, and types. Finally, we
provide a mapping between some aspects of our gameplay preference specification and
linear temporal logic (LTL) operators.

.11 Setup

The setup section specifies how the environment must be transformed from its deterministic
initial conditions to a state gameplay can begin at. Currently, a particular environment room
always appears in the same initial conditions, in terms of which objects exist and where
they are placed. Participants in our experiment could, but did not have to, specify how the
room must be setup so that their game could be played.

The initial (setup) element can expand to conjunctions, disjunctions, negations, or quantifica-
tions of itself, and then to the (setup-statement) rule. (setup-statement) elements specify two
different types of setup conditions: either those that must be conserved through gameplay
(‘game-conserved’), or those that are optional through gameplay (‘game-optional’). These
different conditions arise as some setup elements must be maintain through gameplay (for
example, a participant specified to place a bin on the bed to throw balls into, it shouldn’t
move unless specified otherwise), while other setup elements can or must change (if a
participant specified to set the balls on the desk to throw them, an agent will have to pick
them up (and off the desk) in order to throw them).

Inside the (setup-statement) tags we find (super-predicate) elements, which are logical op-
erations and quantifications over other (super-predicate) elements, function comparisons
({function-comparison), which like predicates also resolve to a truth value), and predicates
({predicate)). Function comparisons usually consist of a comparison operator and two argu-
ments, which can either be the evaluation of a function or a number. The one exception is the
case where the comparison operator is the equality operator (=), in which case any number
of arguments can be provided. Finally, the (predicate) element expands to a predicate acting

on one or more objects or variables. For a full list of the predicates we found ourselves using
so far, see[Appendix 1.2.1

(setup) == (and (setup) (setup)™) # A setup can be expanded to a conjunction, a disjunction,
a quantification, or a setup statement (see below).
| (or (setup) (setup)™)
| (not (setup))

43

| (exists ((typed list(variable))) (setup))
| (forall ((typed list(variable))) (setup))
| (setup-statement)

(setup-statement) ::= # A setup statement specifies that a predicate is either optional during
gameplay or must be preserved during gameplay.
| (game-conserved (super-predicate))
| (game-optional (super-predicate))

(super-predicate) ::= # A super-predicate is a conjunction, disjunction, negation, or quantifi-
cation over another super-predicate. It can also be directly a function comparison or a
predicate.

| (and (super-predicate) ™)
| (or (super-predicate)™)
| (not (super-predicate)

| (exists ((typed list(variable))) (super-predicate))

| (super-predicate))

|

|

~

(forall ((typed list(variable))
(f-comp)
(predicate)
(function-comparison) ::= # A function comparison: either comparing two function evalua-
tions, or checking that two ore more functions evaluate to the same result.
| ((comp-op) (function-eval-or-number) (function-eval-or-number))
| (= (function-eval-or-number) ™)
(comp-op) == (| (= | = |') |)=# Any of the comparison operators.
(function-eval-or-number) == (function-eval) | (comparison-arg-number)
(comparison-arg-number) = (number)
<number> u= /-2\d*\.?\d+/ # A number, either an integer or a float.

(function-eval) ::= # See valid expansions in a separate section below

(variable-list) ::= ((variable-def)™) # One or more variables definitions, enclosed by paren-
theses.

(variable-def) ::= (variable-type-def) I (color-variable-type-def) |
(orientation-variable-type-def) | (side-variable-type-def) # Colors, sides, and orien-
tations are special types as they are not interchangable with objects.

(variable-type-def) ::= (variable)™ - (type-def) # Each variable is defined by a variable (see
next) and a type (see after).

(color-variable-type-def) ::= (color-variable)™ - (color-type-def) # A color variable is defined by
a variable (see below) and a color type.

(orientation-variable-type-def) ::= (orientation-variable)™ - (orientation-type-def) # An orienta-
tion variable is defined by a variable (see below) and an orientation type.

(side-variable-type-def) := (side-variable)™ - (side-type-def) # A side variable is defined by a
variable (see below) and a side type.

(variable) == /\?[a-w][a-z0-9]*/ # a question mark followed by a lowercase a-w, optionally
followed by additional letters or numbers.

(color-variable) ::= /\?x[0-9]*/ # a question mark followed by an x and an optional number.

44

(orientation-variable) := /\?y[0-9]*/ # a question mark followed by an y and an optional
number.

(side-variable) == /\?z[0-9]*/ # a question mark followed by an z and an optional number.

(type-def) = (object-type) | (either-types) # A veriable type can either be a single name, or a
list of type names, as specified below

(color-type-def) ::= (color-type) | (either-color-types) # A color variable type can either be a
single color name, or a list of color names, as specified below

(orientation-type-def) ::= (orientation-type) | (either-orientation-types) # An orientation vari-
able type can either be a single orientation name, or a list of orientation names, as
specified below

(side-type-def) := (side-type) | (either-side-types) # A side variable type can either be a single
side name, or a list of side names, as specified below

either-types) ::= (either (object-type)™)
either-color-types) ::= (either (color)™)
either-orientation-types) ::= (either (orientation)™)

(
(
(
(either-side-types) = (either (side)™)
(object-type) == (name)

(

name) = /[A-Za-z][A-za-z0-9_]+/ # a letter, followed by one or more letters, digits, or
underscores

(color-type) ::= "color’

(color) ::= 'blue’ | ‘brown’ | ‘gray’ | ‘green’ | ‘orange’ | 'pink’ | ‘purple’ | 'red” | "tan’ |
‘white’ | "yellow’

orientation-type) ::= 'orientation’
orientation) ::= 'diagonal’ | ‘sideways’ | ‘upright’ | ‘upside_down’
side-type) == 'side’

(

(

(

(side) ::= 'back’ | “front’ | "left’ | 'right’

(predicate) ::= # See valid expansions in a separate section below
(

predicate-or-function-term) ::= (object-name) | (variable) # A predicate or function term can
either be an object name (from a small list allowed to be directly referred to) or a
variable.

predicate-or-function-color-term) ::= (color) | (color-variable)

predicate-or-function-orientation-term) ::= (orientation) | (orientation-variable)

(

(

(predicate-or-function-side-term) ::= (side) | (side-variable)

(predicate-or-function-type-term) == (object-type) | (variable)

(object-name) ::= "agent’ | ‘bed’ | “desk’ | “door” | “floor’ | ‘main_light_switch’ | ‘mir-
ror’ | ‘room_center” | ‘rug’ | ’side_table’ | 'bottom_drawer” | 'bottom_shelf” |
‘east_sliding_door’ east_wall’ | 'north_wall’ | ’south_wall’ | "top_drawer’ |

"top_shelf’ | ‘west_sliding_door” | ‘west_wall’

| 4

45

I.1.2 Gameplay Preferences

The gameplay preferences specify the core of a game’s semantics, capturing how a game
should be played by specifying temporal constraints over predicates. The name for the
overall element, (constraints), is inherited from the PDDL element with the same name.

The (constraints) elements expand into one or more preference definitions, which are defined
using the (pref-def) element. A (pref-def) either expands to a single preference ((preference)),
or to a (pref-forall) element, which specifies variants of the same preference for different
objects, which can be treated differently in the scoring section. A (preference) is defined by a
name and a (preference-quantifier), which expands to an optional quantification (exists, forall,
or neither), inside of which we find the (preference-body).

A (preference-body) expands into one of two options: The first is a set of conditions that
should be true at the end of gameplay, using the (at-end) operator. Inside an (at-end) we
find a (super-predicate), which like in the setup section, expands to logical operations or
quantifications over other (super-predicate) elements, function comparisons, or predicates.

The second option is specified using the (then) syntax, which defines a series of temporal
conditions that should hold over a sequence of states. Under a (then) operator, we find two
or more sequence functions ((seq-func)), which define the specific conditions that must hold
and how many states we expect them to hold for. We assume that there are no unaccounted
states between the states accounted for by the different operators — in other words, the
(then) operators expects to find a sequence of contiguous states that satisfy the different
sequence functions. The operators under a (then) operator map onto linear temporal logic
(LTL) operators, see for the mapping and examples.

The (once) operator specifies a predicate that must hold for a single world state. If a (once)
operators appears as the first operator of a (then) definition, and a sequence of states
Sa,Sa+1,+ -+, Sp satisfy the (then) operator, it could be the case that the predicate is satisfied
before this sequence of states (e.g. by S;_1, S;—2, and so forth). However, only the final such
state, Sy, is required for the preference to be satisfied. The same could be true at the end of
the sequence: if a (then) operator ends with a (once) term, there could be other states after
the final state (S; 1, Sy 2, etc.) that satisfy the predicate in the (once) operator, but only one
is required. The (once-measure) operator is a slight variation of the (once) operator, which
in addition to a predicate, takes in a function evaluation, and measures the value of the
function evaluated at the state that satisfies the preference. This function value can then be
used in the scoring definition, see
A second type of operator that exists is the (hold) operator. It specifies that a predicate must
hold true in every state between the one in which the previous operator is satisfied, and
until one in which the next operator is satisfied. If a (hold) operator appears at the beginning
or an end of a (then) sequence, it can be satisfied by a single state, Otherwise, it must be
satisfied until the next operator is satisfied. For example, in the minimal definition below:
(

((pred_a))

(hold (pred_b))

((pred_c))
)

To find a sequence of states S;, S,+1, - - - , Sp that satisfy this (then) operator, the following
conditions must hold true: (1) pred_a is true at state S,;, (2) pred_b is true in all states
So+1,Sa+42,++ ,Sp—2,Sp—1, and (3) pred_c is true in state S;. There is no minimal number of
states that the hold predicate must hold for.

The last operator is (hold-while), which offers a variation of the (hold) operator. A (hold-while)
receives at least two predicates. The first acts the same as the predicate in a (hold) operator.
The second (and third, and any subsequent ones), must hold true for at least one state while
the first predicate holds, and must occur in the order specified. In the example above, if
we substitute ((pred_b)) for ((pred_b) (pred_d) (pred_e)), we now
expect that in addition to pred_b being true in all states 5,1, Sy42, - - - , Sp—2, Sp—1, that there
is some state Sy, d € [a+ 1,b — 1] where pred_d holds, and another state, S,,e € [d+ 1,0 — 1]
where pred_e holds.

46

(constraints) = (pref-def) | (and (pref-def)™) # One or more preferences.

(pref-def) == (pref-forall) | (preference) # A preference definitions expands to either a forall
quantification (see below) or to a preference.

(pref-forall) ::= (forall (variable-list) (preference)) # this syntax is used to specify variants
of the same preference for different objects, which differ in their scoring. These are
specified using the (pref-name-and-types) syntax element’s optional types, see scoring
below.

(preference) ::= (preference (name) (preference-quantifier)) # A preference is defined by a
name and a quantifer that includes the preference body.

(preference-quantifier) ::= # A preference can quantify exsistentially or universally over one
or more variables, or none.
| (exists ((variable-list)) (preference-body)
| (forall ((variable-list)) (preference-body))
| (preference-body))

(preference-body) ::= (then) | (at-end)

(at-end) = (at-end (super-predicate)) # Specifies a prediicate that should hold in the terminal
state.

(then) ::= (then (seg-func) (seq-func)™) # Specifies a series of conditions that should hold
over a sequence of states — see below for the specific operators ((seq-func)s), and Section
2 for translation of these definitions to linear temporal logicl (LTL).

(seq-func) = (once) | (once-measure) | (hold) | (hold-while) # Four of thse temporal se-
quence functions currently exist:

(once) ::= (once (super-predicate)) # The predicate specified must hold for a single world
state.

(once-measure) ::= (once (super-predicate) (function-eval)) # The predicate specified must
hold for a single world state, and record the value of the function evaluation, to
be used in scoring.

(hold) ::= (hold (super-predicate)) # The predicate specified must hold for every state between
the previous temporal operator and the next one.

(hold-while) ::= (hold-while (super-predicate) (super-predicate)™) # The first predicate speci-
fied must hold for every state between the previous temporal operator and the next
one. While it does, at least one state must satisfy each of the predicates specified in the
second argument onward

For the full specification of the (super-predicate) element, see|Appendix I.1.1/above.

I1.1.3 Terminal Conditions

Specifying explicit terminal conditions is optional, and while some of our participants chose
to do so, many did not. Conditions explicitly specified in this section terminate the game. If
none are specified, a game is assumed to terminate whenever the player chooses to end the
game.

The terminal conditions expand from the (terminal) element, which can expand to logical
conditions on nested (terminal) elements, or to a terminal comparison. The terminal compar-
ison ((terminal-comp)) expands to one of three different types of copmarisons: (terminal-time-
comp), a comparison between the total time spent in the game ((total-time)) and a time
number token, (terminal-score-comp), a comparison between the total score ((total-score))

47

and a score number token, or (terminal-pref-count-comp), a comparison between a scoring
expression ((scoring-expr), see below) and a preference count number token. In most cases,
the scoring expression is a preference counting operation.

(terminal) ::= # The terminal condition is specified by a conjunction, disjunction, negation,
or comparson (see below).
| (and (terminal)™)
| (or (terminal)+)
| (not (terminal))
| (terminal-comp)

(terminal-comp) ::= # We support three ttypes of terminal comparisons:
| (terminal-time-comp)
| (terminal-score-comp)
| (terminal-pref-count-comp)

(terminal-time-comp) ::= ((comp-op) (total-time) (time-number)) # The total time of the game
must satisfy the comparison.

(terminal-score-comp) ::= ((comp-op) (total-score) (score-number)) # The total score of the
game must satisfy the comparison.

(terminal-pref-count-comp) == ({comp-op) (scoring-expr) (preference-count-number)) # The
number of times the preference specified by the name and types must satisfy the
comparison.

(time-number) ::= (number) # Separate type so the we can learn a separate distribution over
times than, say, scores.

(score-number) ::= (number)

(preference-count-number) ::= (number)
(comp-op)y == (1 (= I =1)1)=
For the full specification of the (scoring-expr) element, see|Appendix I.1.4{below.

I.1.4 Scoring

Scoring rules specify how to count preferences (count once, once for each unique objects
that fulfill the preference, each time a preference is satisfied, etc.), and the arithmetic to
combine preference counts to a final score in the game.

A (scoring-expr) can be defined by arithmetic operations on other scoring expressions,
references to the total time or total score (for instance, to provide a bonus if a certain score
is reached), comparisons between scoring expressions ((scoring-comp)), or by preference
evaluation rules. Various preference evaluation modes can expand the (preference-eval) rule,
see the full list and descriptions below.

(scoring) = (scoring-expr) # The scoring conditions maximize a scoring expression.

(scoring-expr) == # A scoring expression can be an arithmetic operation over other scoring
expressions, a reference to the total time or score, a comparison, or a preference scoring
evaluation.

| (scoring-external-maximize)
| (scoring-external-minimize)

| ((multi-op) (scoring-expr)™) # Either addition or multiplication.

| ((binary-op) (scoring-expr) (scoring-expr)) # Either division or subtraction.

| (- (scoring-expr))

| (total-time)

48

| (total-score)

| (scoring-comp)

| (preference-eval)

| (scoring-number-value)

scoring-external-maximize) ::= (external-forall-maximize (scoring-expr)) # For any prefer-

8 8-exp yp
ences under this expression inside a (forall ...), score only for the single externally-
quantified object that maximizes this scoring expression.

(scoring-external-minimize) ::= (external-forall-minimize (scoring-expr)) # For any prefer-
ences under this expression inside a (forall ...), score only for the single externally-
quantified object that minimizes this scoring expression.

(scoring-comp) == # A scoring comparison: either comparing two expressions, or checking
that two ore more expressions are equal.
| ((comp-op) (scoring-expr) (scoring-expr))
| (= (scoring-expr)™)

(preference-eval) := # A preference evaluation applies one of the scoring operators (see
below) to a particular preference referenced by name (with optional types).

| {count)

| (count-overlapping)

| (count-once)

| (count-once-per-objects)

| (count-measure)

| (count-unique-positions)

| (count-same-positions)

| (count-once-per-external-objects)

(count) ::= (count (pref-name-and-types)) # Count how many times the preference is satisfied
by non-overlapping sequences of states.

(count-overlapping) ::= (count-overlapping (pref-name-and-types)) # Count how many times
the preference is satisfied by overlapping sequences of states.

(count-once) := (count-once (pref-name-and-types)) # Count whether or not this preference
was satisfied at all.

(count-once-per-objects) ::= (count-once-per-objects (pref-name-and-types)) # Count once for
each unique combination of objects quantified in the preference that satisfy it.

(count-measure) ::= (count-measure (pref-name-and-types)) # Can only be used in preferences
including a (once-measure) modal, maps each preference satistifaction to the value of
the function evaluation in the (once-measure).

(count-unique-positions) ::= (count-unique-positions (pref-name-and-types)) # Count how
many times the preference was satisfied with quantified objects that remain stationary
within each preference satisfcation, and have different positions between different
satisfactions.

(count-same-positions) ::= (count-same-positions (pref-name-and-types)) # Count how many
times the preference was satisfied with quantified objects that remain stationary within
each preference satisfcation, and have (approximately) the same position between
different satisfactions.

(count-once-per-external-objects) ::= (count-once-per-external-objects (pref-name-and-types)) #

Similarly to count-once-per-objects, but counting only for each unique object or combi-
nation of objects quantified in the (forall ...) block including this preference.

49

(pref-name-and-types) == (name) (pref-object-type)™ # The optional (pref-object-type)s are used
to specify a particular instance of the preference for a given object, see the (pref-forall)
syntax above.

(pref-object-type) = : (type-name) # The optional type name specification for the above
syntax. For example, pref-name:dodgeball would refer to the preference where the first
quantified object is a dodgeball.

(scoring-number-value) ::= (number)

1.2 Non-Grammar Definitions
1.2.1 Predicates

The following section describes the predicates we define. Predicates operate over a specified
number of arguments, which can be variables or object names, and return a boolean value
(true/false).

(above <argl> <arg2>) [5 references] ; Is the first object above the second object?
(adjacent <argl> <arg2>) [78 references] ; Are the two objects adjacent? [will probably be implemented as distance below some
threshold]

(adjacent_side <3 or 4 arguments>) [15 references] ; Are the two objects adjacent on the sides specified? Specifying a side for the

second object is optional, allowing to specify <obj1> <sidel> <obj2> or <obj1> <sidel> <obj2> <side2>
(agent_crouches) [2 references] ; Is the agent crouching?
(agent_holds <argl>) [327 references] ; Is the agent holding the object?

(be en <argl> <arg2> <arg3>) [7 references] ; Is the second object between the first object and the third object?

(broken <arg1>) [2 references] ; Is the object broken?

(equal_x_position <argl> <arg2>) [2 references] ; Are these two objects (approximately) in the same x position? (in our environment,
ight)

X, z are spatial coordinates, y is the heig

(equal_z_position <argl> <arg2>) [5 references] Are these two objects (approximately) in the same z position? (in our environment,

X, z are spatial coordinates, y is the height)

es <argl> <arg2>) [6 references] ; Is the front of the first object facing the front of the second object?

_over) [4 references] ; Is this the last state of gameplay?

start) [3 references] ; Is this the first state of gameplay?

in <argl1> <arg2>) [121 references] ; Is the second argument inside the first argument? [a containment check of some sort, for balls
in bins, for example]

(in_motion <argl>) [315 references] ; Is the object in motion?

~A~AA~A~

(is_setup_object <argl>) [13 references] ; Is this the object of the same type referenced in the setup?

(object_orientation <argl> <arg2>) [14 references] ; Is the first argument, an object, in the orientation specified by the second
argument? Used to check if an object is upright or upside down

(on <argl> <arg2>) [168 references] ; Is the second object on the first one?

(open <arg1>) [3 references] ; Is the object open? Only valid for objects that can be opened, such as drawers.

(opposite <argl> <arg2>) [4 references] ; So far used only with walls, or sides of the room, to specify
other in conjunction with other predicates involving thes alls

(rug_color_under <argl> <arg2>) [11 references] ; Is the color of the rug under the object (first argument) the color specified by
the second argument?

(same_color <argl> <arg2>) [23 references] ; If two objects, do they have the same color? If one is a color, does the object have
that color?

o walls opposite each

(e_object <argl> <arg2>) [7 references] ; Are these two variables bound to the same object?

(_type <argl> <arg2>) [14 references] ; Are these two objects of the same type? Or if one is a direct reference to a type, is
this object of that type?

(toggled_on <arg1>) [4 references] ; Is this object toggled on?

(touch <argl> <arg2>) [48 references] ; Are these two objects touching?

1.2.2 Functions

he following section describes the functions we define. Functions operate over a specified
number of arguments, which can be variables or object names, and return a number.

(building_size <arg1>) [2 references] ; Takes in an argument of type building, and returns how many objects comprise the building (
as an integer).

(distance <argl> <arg2>) [114 references] ; Takes in two arguments of type object, and returns the distance between the two objects
(as a floating point number).

(distance_side <argl> <arg2> <arg3>) [6 references] ; Similarly to the adjacent_side predicate, but applied to distance. Takes in
three or four arguments, either <obj1> <sidel> <obj2> or <obj1> <sidel> <obj2> <side2>, and returns the distance between the
first object on the side specified to the second object (optionally to its specified side).

(x_position <argl>) [4 references] ; Takes in an argument of type object, and returns the x position of the object (as a floating
point number).

.23 Types

The types are currently not defined as part of the grammar, other than the small list of
(object-name) tokens that can be directly referred to, and are marked with an asterisk below.
The following enumerates all expansions of the various (type) rules:

50

game_object [33 references] ; Parent type of all objects

agent* [90 references] ; The agen

building [20 references] ; Not a real game object, but rather, a way to refer to structures the agent builds
—————————— (* \textbf{Blocks} %) ----------

block [28 references] ; Parent type of all block types

bridge_block [11 references]

bridge_block_green [0 references]

bridge_block_pink [0 references]

bridge_block_tan [0 references]

cube_block [38 references]

cube_block_blue [8 references]

cube_block_tan [1 reference]

cube_block_yellow [8 references]

cylindrical_block [11 references]
cylindrical_block_blue [0 references]
cylindrical_block_green [@ references]
cylindrical_block_tan [@ references]

flat_block [5 references]

flat_block_gray [0 references]

flat_block_tan [0 references]

flat_block_yellow [0 references]

pyramid_block [13 references]

pyramid_block_blue [3 references]

pyramid_block_red [2 references]
pyramid_block_yellow [2 references]
tall_cylindrical_block [7 references]
tall_cylindrical_block_green [0 references]
tall_cylindrical_block_tan [0 references]
tall_cylindrical_block_yellow [@ references]
tall_rectangular_block [@ references]
tall_rectangular_block_blue [@ references]
tall_rectangular_block_green [0 references]
tall_rectangular_block_tan [0 references]
triangle_block [3 references]

triangle_block_blue [@ references]
triangle_block_green [0 references]
triangle_block_tan [0 references]

—————————— (*x \textbf{Balls} *) ----------

ball [40 references] ; Parent type of all ball types
beachball [23 references]

basketball [18 references]

dodgeball [108 references]

dodgeball_blue [6 references]

dodgeball_red [4 references]

dodgeball_pink [8 references]

golfball [25 references]

golfball_green [3 references]

golfball_white [0 references]

ffffffffff (*x \textbf{Colors} %) ----------

color [6 references] ; Likewise, not a real game object, mostly used to refer to the color of the rug under an object
blue [6 references]

brown [5 references]

gray [0 references]

green [8 references]

orange [3 references]

pink [19 references]

purple [4 references]

red [8 references]

tan [2 references]

white [1 reference]

yellow [14 references]

—————————— (x \textbf{Furniture} %) ----------

bedx [51 references]

blinds [2 references] ; The blinds on the windows

desk* [40 references]

desktop [6 references]

main_light_switch* [3 references] ; The main light tch on the
side_tablex [4 references] ; The side table/nightstand next to the bed
shelf_desk [2 references] ; The shelves under the desk

- - (* \textbf{Large moveable/interactable objects} *) ---
book [11 references]

chair [18 references]

laptop [7 references]

pillow [14 references]

teddy_bear [14 references]

—————————— (x \textbf{Orientations} *) ----------

diagonal [1 reference]

sideways [2 references]

upright [10 references]

upside_down [1 reference]

- (* \textbf{Ramps} %) ----
ramp [0 references] ; Parent type of all ramp types:
curved_wooden_ramp [17 references]

triangular_ramp [10 references]
triangular_ramp_green [1 reference]
triangular_ramp_tan [0 references]

—————————— (* \textbf{Receptacles} *) ----------
doggie_bed [26 references]

hexagonal_bin [123 references]

drawer [5 references] ; Either dr in the side table
bottom_drawer* [0 references] ; The bottom of the two drawers in the nig
top_drawerx [6 references] ; The top of the two drawers in the nightstanc

tstand near the bed.
near the bed.

51

(* \textbf{Room features} *) ----------

door* [9 references]

floor* [26 references]

mirror* [@ references]

poster* [0 references]
room_center* [0 references]

rugx [37 references]

shelf [10 references]
bottom_shelf* [1 reference]
top_shelfx [5 references]
sliding_door [2 references]
east_sliding_door* [1 reference]
west_sliding_door* [0 references]
wall [17 references]

east_wall* [0 references]
north_wall* [1 reference]
south_wall* [2 references]
west_wallx [3 references]

(* \textbf{Small objects} *) ----------

alarm_clock [8 references]
cellphone [6 references]
cd [6 references]
credit_card [1 reference]
key_chain [5 references]
lamp [2 references]

mug [3 references]

pen [2 references]

pencil [2 references]
watch [2 references]

(* \textbf{Sides} %) ---------—-

back [3 references]
front [9 references]
left [3 references]
right [2 references]

1.3 Modal Definitions in Linear Temporal Logic

I.3.1 Linear Temporal Logic definitions

We offer a mapping between the temporal sequence functions defined in
and linear temporal logic (LTL) operators. As we were creating this DSL, we found that
the syntax of the (then) operator felt more convenient than directly writing down LTL, but
we hope the mapping helps reason about how we see our temporal operators functioning.
LTL offers the following operators, using ¢ and ¢ as the symbols (in our case, predicates).
Assume the following formulas operate sequence of states So, Sq, - -, Su:

Next, X1p: at the next timestep, ¢ will be true. If we are at timestep i, then S; 1 - ¢

Finally, Fi: at some future timestep, 1 will be true. If we are at timestep i, then
Jj>i:Siky

Globally, Gi: from this timestep on, ¢ will be true. If we are at timestep i, then
Vitjzi:Siky

Until, U ¢: ¢ will be true from the current timestep until a timestep at which ¢ is
true. If we are at timestep i, then 3j > i: Vk:i <k <j: S F ¢, and S]- F o

Strong release, y M : the same as until, but demanding that both ¢ and ¢ are true
simultaneously: If we are at timestep i, then 3j > i : Vk :i <k <j: S F 1, and
Aside: there’s also a weak until, yW ¢, which allows for the case where the second
is never true, in which case the first must hold for the rest of the sequence. Formally,
if we are at timestep 7, if 3j > i:Vk:i <k <j: S5t ¢,and S; - ¢, and otherwise,
Vk > i: Sx ¢. Similarly there’s release, which is the similar variant of strong
release. We're leaving those two as an aside since we don’t know we’ll need them.

1.3.2 Satisfying a (then) operator

Formally, to satisfy a preference using a (then) operator, we're looking to find a sub-sequence
of So,S1, - -, Sy that satisfies the formula we translate to. We translate a (then) operator by

52

translating the constituent sequence-functions ({(once), (hold), (while—hold)ﬂto LTL. Since the
translation of each individual sequence function leaves the last operand empty, we append
a ‘true’ (T) as the final operand, since we don’t care what happens in the state after the
sequence is complete.

(once p) :==ypX - --
(hold) :=yU - - -

(hold-while p a B - - - v) := (yMa)X(YMPB)X - - - X(pMv) XU - - - where the last U - - -
allows for additional states satisfying 1 until the next modal is satisfied.

For example, a sequence such as the following, which signifies a throw attempt:

(then
(once (?b))
(hold (and (not (?b)) (b))
(once (not (7))

)

Can be translated to LTL using ¢ := (agent_holds ?b), ¢ := (in_motion ?b) as:

YX(p A @)U(-e)XT
Here’s another example:

(then
(once (M) o«
(hold-while
(and (not (?b)) () ;5 B
() oy
)
(once (and (in ?h ?b) (not (7)) ; 6
)

If we translate each predicate to the letter appearing at the end of the line, this translates to:
aX(BMy)XBUSXT

IThese are the ones we’ve used so far in the interactive experiment dataset, even if we previously
defined other ones, too.

53

	Pseudocode and program summary translation
	Full feature set
	Features Most Predictive of Real or Regrown Games

	Objective function algorithm descriptions
	MAP-Elites algorithm details
	DSL to natural language back-translation
	Model sample and real game edit distance similarity
	Human evaluations data analysis
	Detailed human evaluation results
	Mixed-effect model analyses
	Marginal Means Analysis
	Matched-real game similarity analysis

	Model ablations
	Common sense ablation
	Compositionality ablation
	Coherence ablation

	Full domain-specific language description
	DSL Grammar Definitions
	Setup
	Gameplay Preferences
	Terminal Conditions
	Scoring

	Non-Grammar Definitions
	Predicates
	Functions
	Types

	Modal Definitions in Linear Temporal Logic
	Linear Temporal Logic definitions
	Satisfying a then operator

