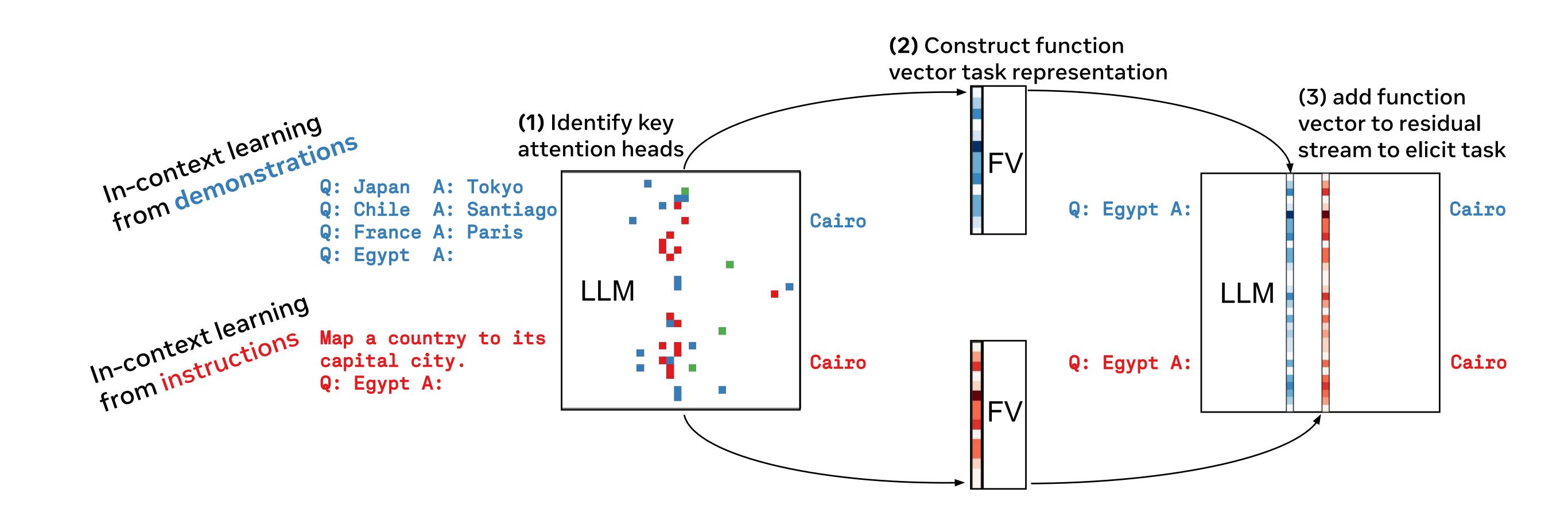
Guy Davidson¹
Todd M. Gureckis²
Brenden M. Lake³
Adina Williams¹

¹Fundamental AI Research, Meta Superintelligence Labs ²Department of Psychology, New York University ³Department of Computer Science and Department of Psychology, Princeton University

Motivation: Do identical tasks elicited in different ways result in similar representations of the task? Case study: extracting function vectors from demonstrations and instructions.

Demonstrations: following the methodology of Todd et al. (2024) Instructions: our contribution (which extends to any prompting approach)



Summary

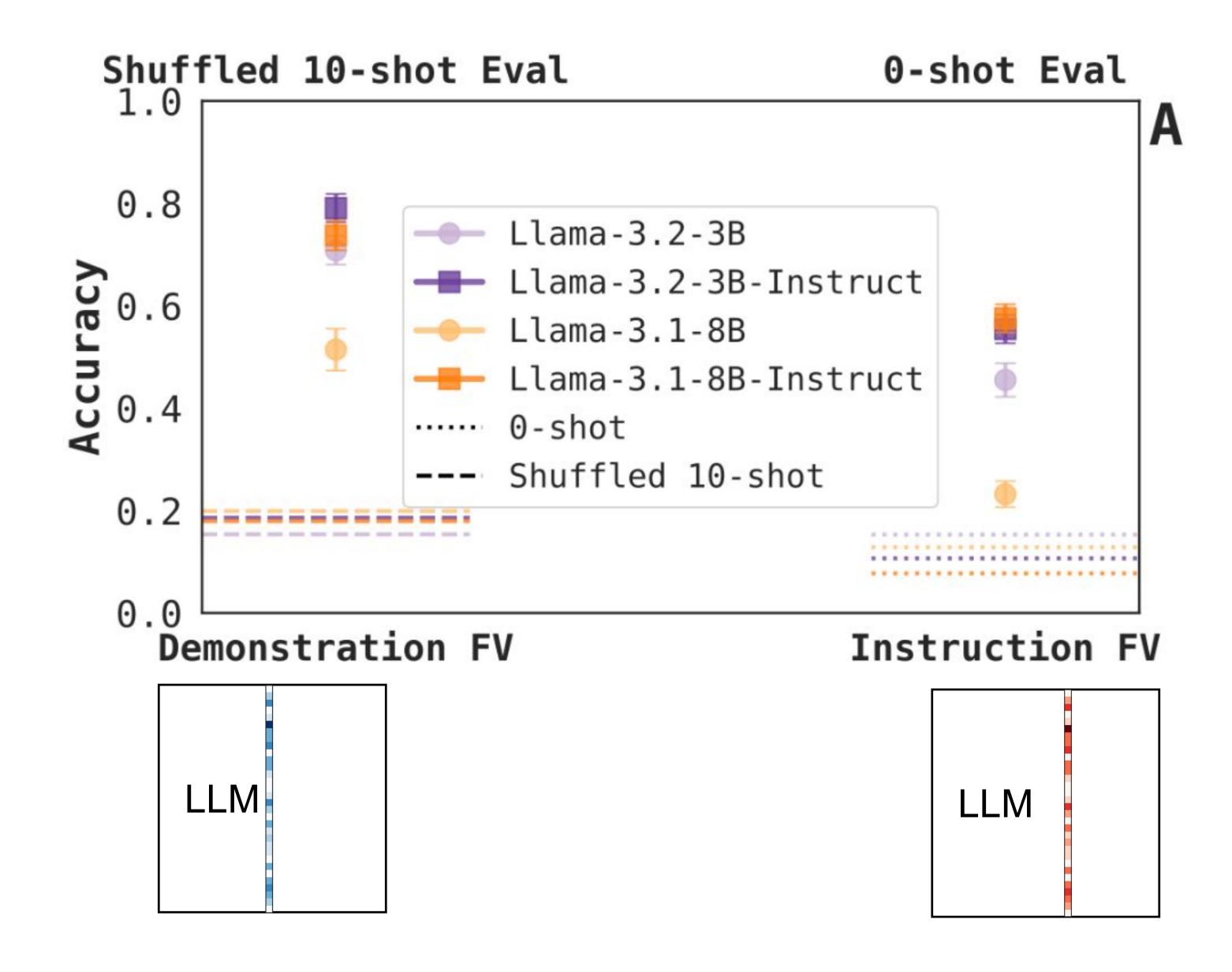
	Claim	Section
Question	Do different ways of presenting the same task elicit a common task representation?	
Method	Extend Function Vectors (FVs) from in-context demonstrations to instructions (and other) task presentations, and analyze their properties.	
Finding 1	Function vectors extracted from instructions facilitate zero-shot task accuracy.	3.1
Finding 2	Demonstration and instruction FVs are beneficial together.	3.2
Finding 3	Instruction and demonstration FVs mostly engage different attention heads.	3.3
Finding 4	Instruction-identified attention heads are more useful for building demonstration FVs than vice versa	
Finding 5	Instruction FVs from post-trained models can steer base models and arise from supervised fine-tuning and preference optimization.	3.5

Function vector extraction technical details

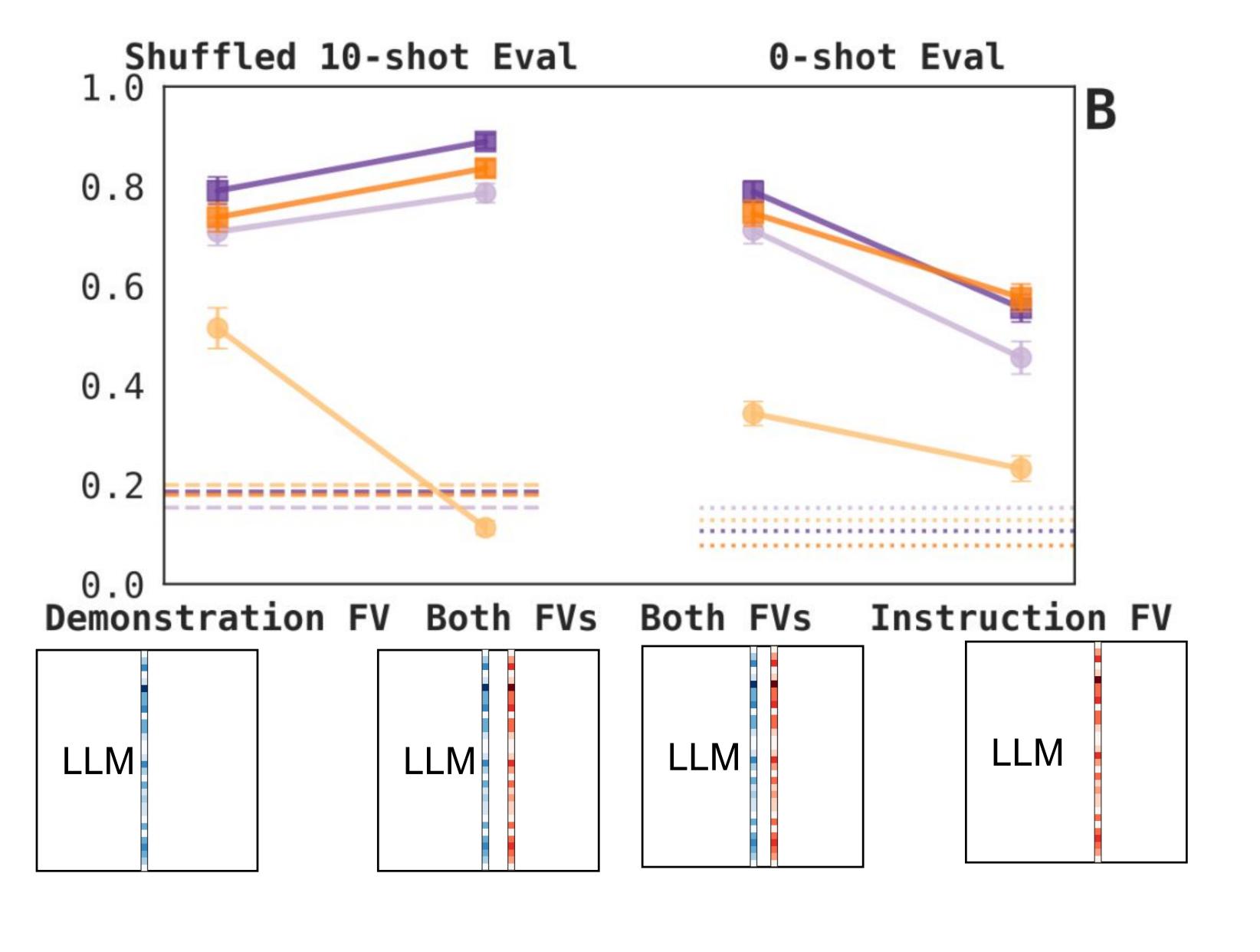
Step	Demonstrations (Todd et al., 2024)	Instructions or other forms (our work)		
From a task dataset $\mathcal{D}_t = \{(x_1,y_1), (x_2,y_2), \cdots, (x_{N_t},y_{N_t})\}$ construct prompts p_i^t	For a query example (x_{iq},y_{iq}) $p_i^t=[(x_{i1},y_{i1}),(x_{i2},y_{i2}),\cdots,(x_{iK},y_{iK}),x_{iq}]$ We use K = 10 (10-shot ICL)	Using task specifications Q_t , sample $q_m^t \in Q_t$ $p_i^t = [q_m^t, x_{iq}].$ We construct Q_t by sampling task instructions from an LLM from task examples.		
Filter prompts to construct a set where the model succeeds $P_t = \{p_1^t, p_2^t, \cdots, p_N^t\}$	Randomly samples demonstrations where the model $\operatorname{pr} y_{iq}$ icts p_i^t from	Select the best few task specifications on the training/demonstration set, and sample prompts with those where the model succeeds.		
Over the set of successes P_t identified above, record the mean output of each attention head as $ar{a}_{lj}^t=rac{1}{ P_t }\sum_{p_i^t\in P_t}a_{lj}(p_i^t)$				
Construct a set of uninformative baseline in-context prompts \tilde{p}_i^t for the previously selected P_t	Shuffle the example-label assignments: $ ilde{p}_i^t = [(x_{i1}, ilde{y}_{i1}), (x_{i2}, ilde{y}_{i2}), \cdots, (x_{iK}, ilde{y}_{iK}), x_{iq}]$	(1) Equiprobable token sequences under the LM(2) Real texts matched on length and probability(3) Specifications for other tasks (also matched)		
Compute the causal indirect effect (CIE) of each head in the model f by intervening $a_{lj}:=\bar{a}_{lj}^t$ with the mean head outputs: $CIE(a_{lj}\mid \tilde{p}_i^t)=f(\tilde{p}_i^t\mid a_{lj}:=\bar{a}_{lj}^t)[y_{iq}]-f(\tilde{p}_i^t)[y_{iq}]$				
Construct a function vector	r^{v_t} from a small set of attention heads \mathcal{A}^D	with the highest CIEs as $v_t = \sum_{a_{lj} \in \mathcal{A}^D} ar{a}_{lj}^t$		

In all shared steps, we follow an identical procedure to Todd et al. (2024)

1 Instruction function vectors facilitate O-shot accuracy

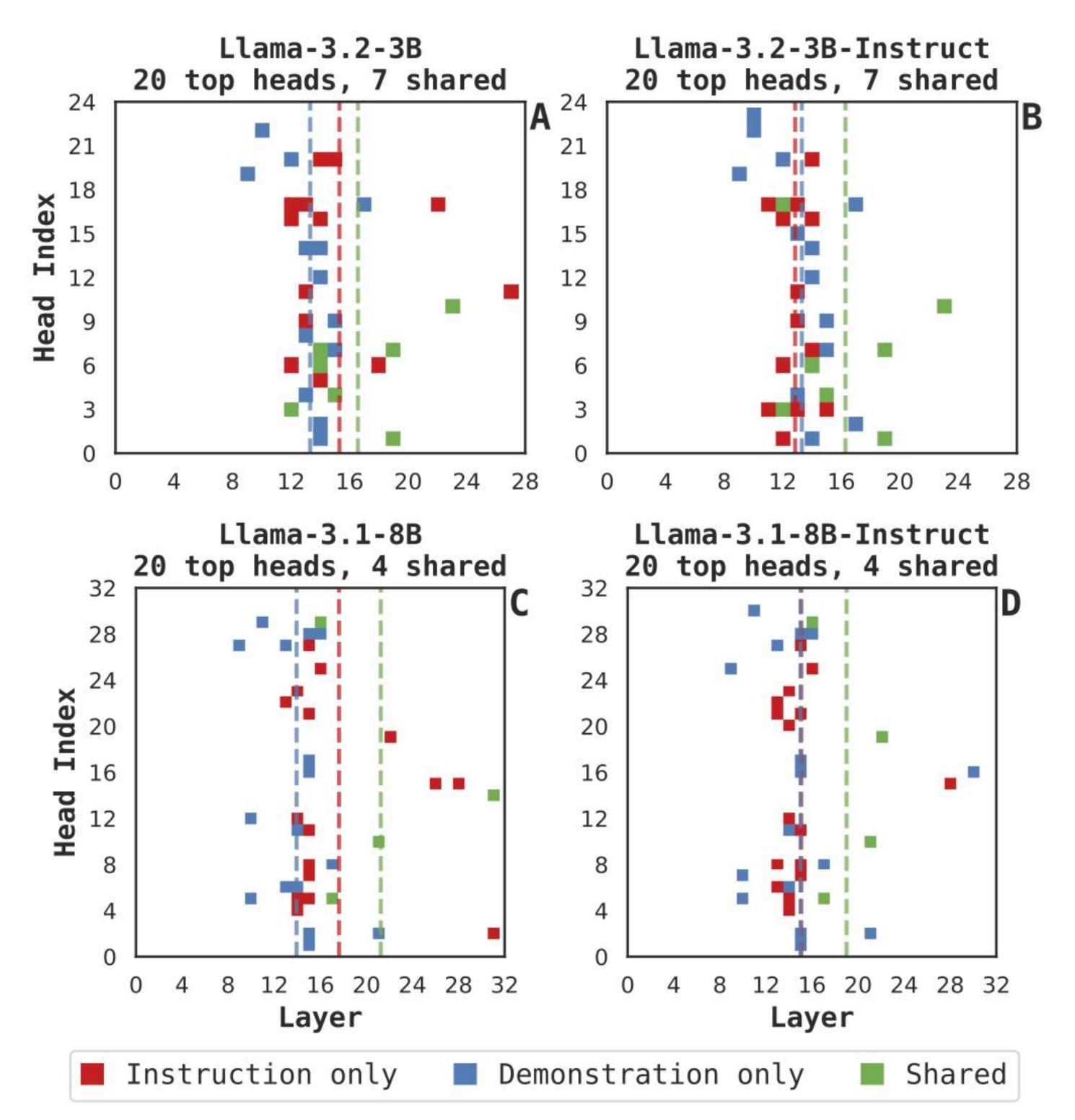


2 Instruction & demonstration FVs are beneficial together



Is this just amplifying the intervention?
We test adding the same FV twice and find it explains some, but not all of the benefits.

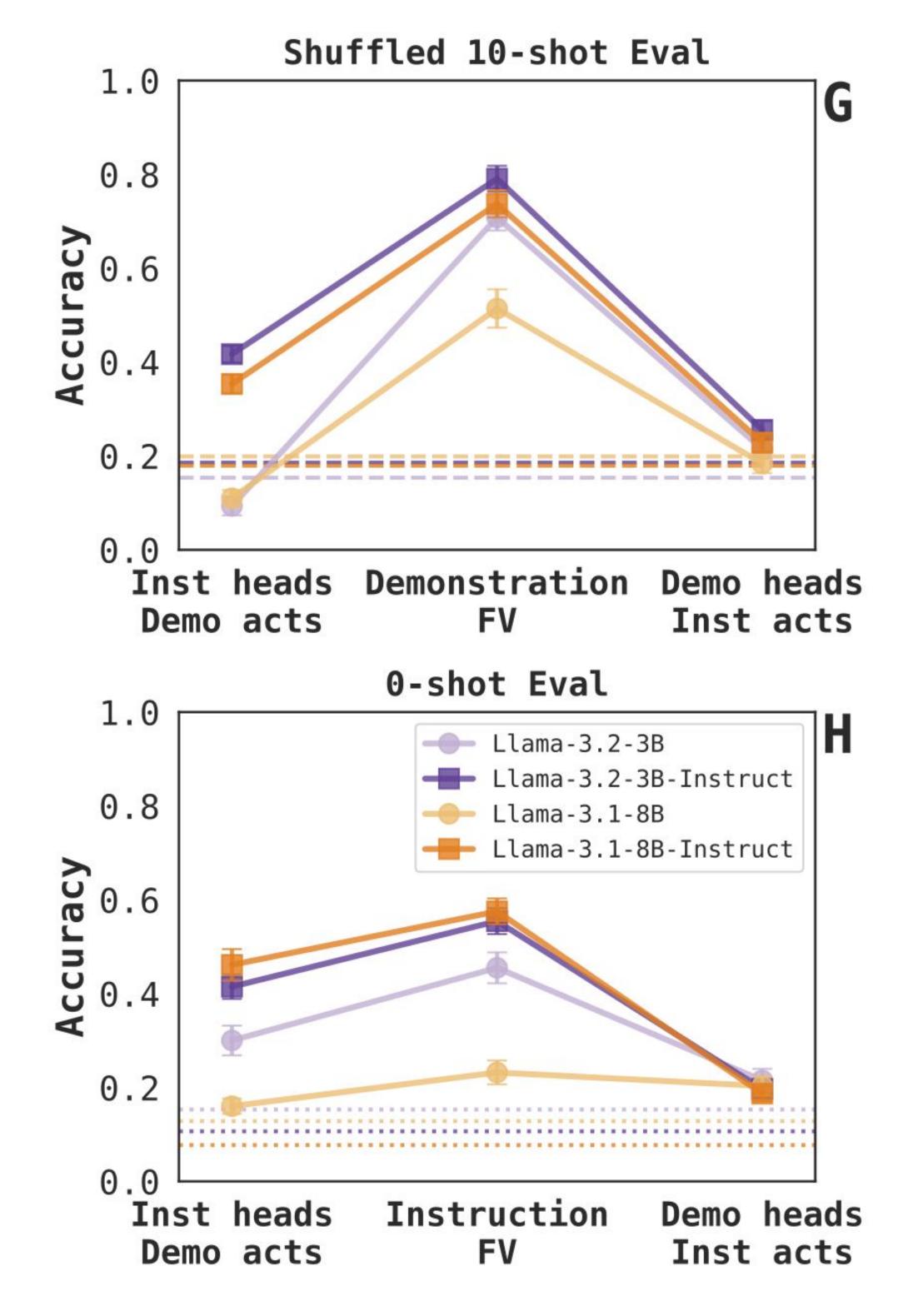
3 Inst. and demo. FVs mostly engage different attn. heads



Across all models, 4-8 / 2- of the top attention heads are shared, the rest are distinct.

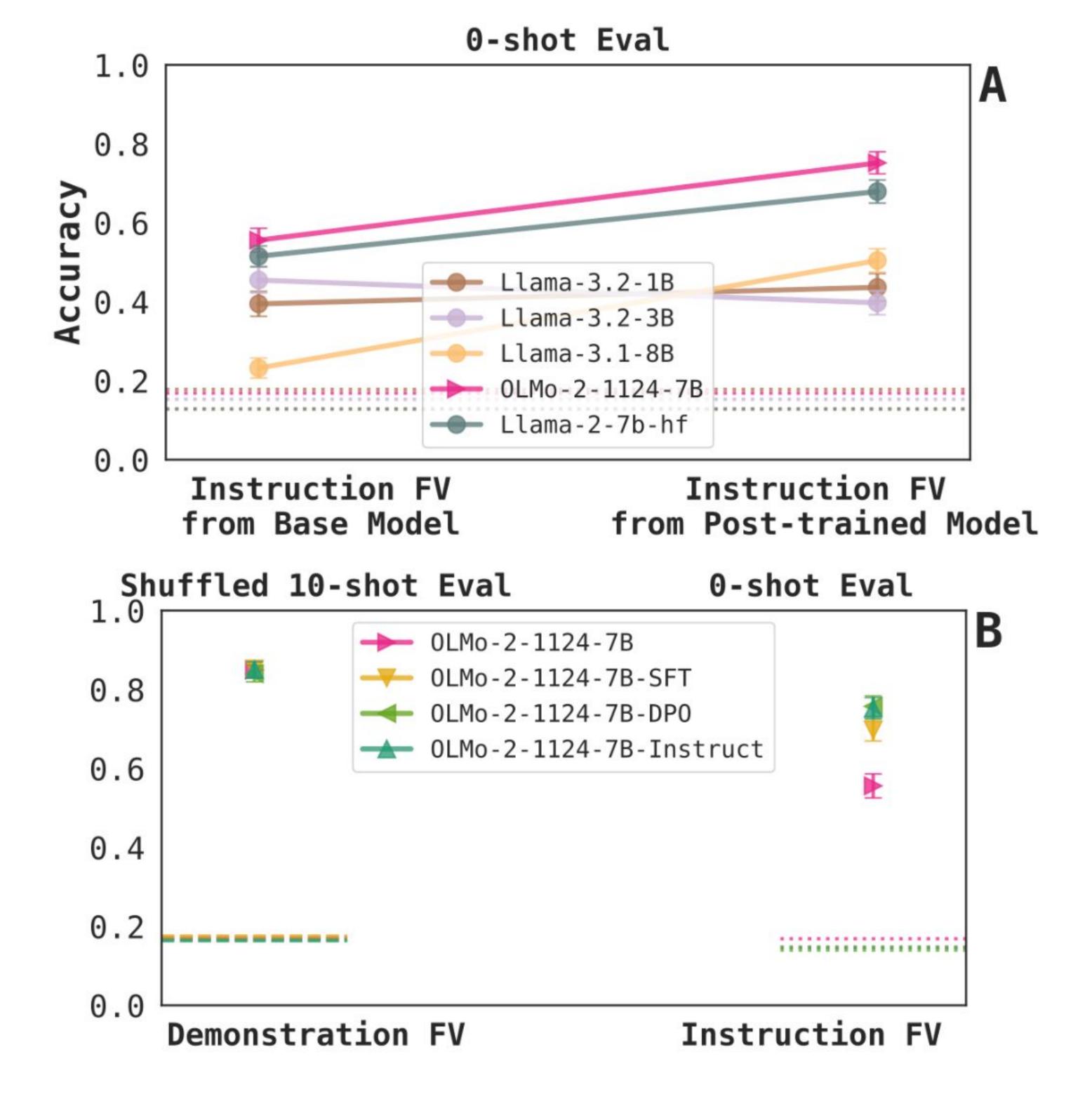
Depths more similar in post-trained models.

4 Instruction heads better for demo FVs than vice versa



Construct 'incongruent' FVs: localize heads with one prompting approach, use mean activations from the other.

5 Instruction function vectors facilitate O-shot accuracy



Transfer successful in the non-distilled models.

Post-training stages show gains after SFT and

DPO, with minimal RL effect.

We intervene after the |L/3| layer (following Todd et al.), highly suboptimal for 3.1-8B. Similar results if we intervene more optimally.